Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,60 +1,50 @@
|
|
1 |
import pandas as pd
|
2 |
-
import
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
#
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
allow_flagging="never"
|
52 |
-
)
|
53 |
-
|
54 |
-
return interface
|
55 |
-
|
56 |
-
# Launch Gradio app
|
57 |
-
if __name__ == "__main__":
|
58 |
-
# Start the Gradio interface
|
59 |
-
app = gradio_interface()
|
60 |
-
app.launch()
|
|
|
1 |
import pandas as pd
|
2 |
+
from transformers import LLaMAForSequenceClassification, LLaMATokenizer
|
3 |
+
|
4 |
+
# Load the data
|
5 |
+
data = pd.read_csv('BANKNIFTY_OPTION_CHAIN_data.csv')
|
6 |
+
|
7 |
+
# Preprocess the data
|
8 |
+
tokenizer = LLaMATokenizer.from_pretrained('llama-2-7b')
|
9 |
+
model = LLaMAForSequenceClassification.from_pretrained('llama-2-7b', num_labels=2)
|
10 |
+
|
11 |
+
# Fine-tune the model on the dataset
|
12 |
+
train_texts, val_texts, train_labels, val_labels = train_test_split(data['text'], data['label'], test_size=0.2, random_state=42)
|
13 |
+
|
14 |
+
train_encodings = tokenizer(train_texts, truncation=True, padding=True)
|
15 |
+
val_encodings = tokenizer(val_texts, truncation=True, padding=True)
|
16 |
+
|
17 |
+
train_dataset = Dataset(train_encodings, train_labels)
|
18 |
+
val_dataset = Dataset(val_encodings, val_labels)
|
19 |
+
|
20 |
+
training_args = TrainingArguments(
|
21 |
+
output_dir='./results', # output directory
|
22 |
+
num_train_epochs=3, # total # of training epochs
|
23 |
+
per_device_train_batch_size=16, # batch size per device during training
|
24 |
+
per_device_eval_batch_size=64, # batch size for evaluation
|
25 |
+
warmup_steps=500, # number of warmup steps for learning rate scheduler
|
26 |
+
weight_decay=0.01, # strength of weight decay
|
27 |
+
logging_dir='./logs', # directory for storing logs
|
28 |
+
)
|
29 |
+
|
30 |
+
trainer = Trainer(
|
31 |
+
model=model, # the instantiated model
|
32 |
+
args=training_args, # training arguments
|
33 |
+
train_dataset=train_dataset, # training dataset
|
34 |
+
eval_dataset=val_dataset # evaluation dataset
|
35 |
+
)
|
36 |
+
|
37 |
+
trainer.train()
|
38 |
+
|
39 |
+
# Use the fine-tuned model to generate strategies
|
40 |
+
def generate_strategies(data):
|
41 |
+
inputs = tokenizer(data['text'], return_tensors='pt')
|
42 |
+
outputs = model(**inputs)
|
43 |
+
logits = outputs.logits
|
44 |
+
strategies = torch.argmax(logits, dim=1)
|
45 |
+
return strategies
|
46 |
+
|
47 |
+
strategies = generate_strategies(data)
|
48 |
+
|
49 |
+
# Print the strategies
|
50 |
+
print(strategies)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|