Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -8,27 +8,6 @@ from sklearn.preprocessing import StandardScaler
|
|
8 |
from sklearn.model_selection import train_test_split
|
9 |
import gradio as gr
|
10 |
import os
|
11 |
-
import time
|
12 |
-
from fastapi import FastAPI, BackgroundTasks
|
13 |
-
from fastapi.middleware.cors import CORSMiddleware
|
14 |
-
import asyncio
|
15 |
-
|
16 |
-
# FastAPI app
|
17 |
-
app = FastAPI()
|
18 |
-
|
19 |
-
# Add CORS middleware
|
20 |
-
app.add_middleware(
|
21 |
-
CORSMiddleware,
|
22 |
-
allow_origins=["*"],
|
23 |
-
allow_credentials=True,
|
24 |
-
allow_methods=["*"],
|
25 |
-
allow_headers=["*"],
|
26 |
-
)
|
27 |
-
|
28 |
-
# Global variables
|
29 |
-
model = None
|
30 |
-
scaler = None
|
31 |
-
latest_report = "Initializing..."
|
32 |
|
33 |
# Define the Dataset class
|
34 |
class BankNiftyDataset(Dataset):
|
@@ -64,11 +43,13 @@ class LSTMModel(nn.Module):
|
|
64 |
return out
|
65 |
|
66 |
# Function to train the model
|
67 |
-
def train_model(train_loader, val_loader, num_epochs=10):
|
68 |
-
global model
|
69 |
criterion = nn.MSELoss()
|
70 |
optimizer = optim.Adam(model.parameters(), lr=0.001)
|
71 |
|
|
|
|
|
|
|
72 |
for epoch in range(num_epochs):
|
73 |
model.train()
|
74 |
for features, labels in train_loader:
|
@@ -87,6 +68,13 @@ def train_model(train_loader, val_loader, num_epochs=10):
|
|
87 |
val_loss /= len(val_loader)
|
88 |
|
89 |
print(f"Epoch {epoch+1}/{num_epochs}, Validation Loss: {val_loss:.4f}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
|
91 |
# Function to generate trading signals
|
92 |
def generate_signals(predictions, actual_values, stop_loss_threshold=0.05):
|
@@ -101,7 +89,7 @@ def generate_signals(predictions, actual_values, stop_loss_threshold=0.05):
|
|
101 |
return signals
|
102 |
|
103 |
# Function to generate a report
|
104 |
-
def generate_report(predictions, actual_values, signals):
|
105 |
report = []
|
106 |
cumulative_profit = 0
|
107 |
for i in range(len(signals)):
|
@@ -115,12 +103,17 @@ def generate_report(predictions, actual_values, signals):
|
|
115 |
|
116 |
total_profit = cumulative_profit
|
117 |
report.append(f"Total Profit: {total_profit:.2f}")
|
|
|
118 |
return "\n".join(report)
|
119 |
|
|
|
|
|
|
|
|
|
120 |
# Function to process data and make predictions
|
121 |
def predict():
|
122 |
-
global
|
123 |
-
|
124 |
# Load the pre-existing CSV file
|
125 |
csv_path = 'BANKNIFTY_OPTION_CHAIN_data.csv'
|
126 |
if not os.path.exists(csv_path):
|
@@ -128,11 +121,13 @@ def predict():
|
|
128 |
|
129 |
# Load and preprocess data
|
130 |
data = pd.read_csv(csv_path)
|
131 |
-
|
132 |
-
|
133 |
-
|
|
|
134 |
else:
|
135 |
-
scaled_data =
|
|
|
136 |
data[['open', 'high', 'low', 'close', 'volume', 'oi']] = scaled_data
|
137 |
|
138 |
# Split data
|
@@ -147,60 +142,39 @@ def predict():
|
|
147 |
val_loader = DataLoader(val_dataset, batch_size=32, shuffle=False)
|
148 |
|
149 |
# Initialize and train the model
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
|
|
157 |
|
158 |
# Make predictions
|
159 |
-
|
160 |
predictions = []
|
161 |
actual_values = val_data['close'].values[seq_len-1:]
|
162 |
with torch.no_grad():
|
163 |
for i in range(len(val_dataset)):
|
164 |
features, _ = val_dataset[i]
|
165 |
-
pred =
|
166 |
predictions.append(pred)
|
167 |
|
168 |
# Generate signals and report
|
169 |
signals = generate_signals(predictions, actual_values)
|
170 |
-
|
171 |
|
172 |
-
return
|
173 |
-
|
174 |
-
# Background task to update the model and report
|
175 |
-
async def update_model_and_report():
|
176 |
-
global latest_report
|
177 |
-
while True:
|
178 |
-
latest_report = predict()
|
179 |
-
await asyncio.sleep(3600) # Update every hour
|
180 |
-
|
181 |
-
# Startup event to begin the background task
|
182 |
-
@app.on_event("startup")
|
183 |
-
async def startup_event():
|
184 |
-
background_tasks = BackgroundTasks()
|
185 |
-
background_tasks.add_task(update_model_and_report)
|
186 |
-
await background_tasks()
|
187 |
-
|
188 |
-
# Gradio interface
|
189 |
-
def gradio_interface():
|
190 |
-
return latest_report
|
191 |
|
|
|
192 |
iface = gr.Interface(
|
193 |
-
fn=
|
194 |
inputs=None,
|
195 |
-
outputs=gr.Textbox(label="
|
196 |
title="BankNifty Option Chain Predictor",
|
197 |
-
description="
|
198 |
)
|
199 |
|
200 |
-
#
|
201 |
-
|
202 |
-
|
203 |
-
# Run the FastAPI app
|
204 |
-
if __name__ == "__main__":
|
205 |
-
import uvicorn
|
206 |
-
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|
|
8 |
from sklearn.model_selection import train_test_split
|
9 |
import gradio as gr
|
10 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
# Define the Dataset class
|
13 |
class BankNiftyDataset(Dataset):
|
|
|
43 |
return out
|
44 |
|
45 |
# Function to train the model
|
46 |
+
def train_model(model, train_loader, val_loader, num_epochs=10):
|
|
|
47 |
criterion = nn.MSELoss()
|
48 |
optimizer = optim.Adam(model.parameters(), lr=0.001)
|
49 |
|
50 |
+
best_val_loss = float('inf')
|
51 |
+
best_model = None
|
52 |
+
|
53 |
for epoch in range(num_epochs):
|
54 |
model.train()
|
55 |
for features, labels in train_loader:
|
|
|
68 |
val_loss /= len(val_loader)
|
69 |
|
70 |
print(f"Epoch {epoch+1}/{num_epochs}, Validation Loss: {val_loss:.4f}")
|
71 |
+
|
72 |
+
if val_loss < best_val_loss:
|
73 |
+
best_val_loss = val_loss
|
74 |
+
best_model = model.state_dict().copy()
|
75 |
+
|
76 |
+
model.load_state_dict(best_model)
|
77 |
+
return model, best_val_loss
|
78 |
|
79 |
# Function to generate trading signals
|
80 |
def generate_signals(predictions, actual_values, stop_loss_threshold=0.05):
|
|
|
89 |
return signals
|
90 |
|
91 |
# Function to generate a report
|
92 |
+
def generate_report(predictions, actual_values, signals, val_loss):
|
93 |
report = []
|
94 |
cumulative_profit = 0
|
95 |
for i in range(len(signals)):
|
|
|
103 |
|
104 |
total_profit = cumulative_profit
|
105 |
report.append(f"Total Profit: {total_profit:.2f}")
|
106 |
+
report.append(f"Model Validation Loss: {val_loss:.4f}")
|
107 |
return "\n".join(report)
|
108 |
|
109 |
+
# Global variables to store the model and scaler
|
110 |
+
global_model = None
|
111 |
+
global_scaler = None
|
112 |
+
|
113 |
# Function to process data and make predictions
|
114 |
def predict():
|
115 |
+
global global_model, global_scaler
|
116 |
+
|
117 |
# Load the pre-existing CSV file
|
118 |
csv_path = 'BANKNIFTY_OPTION_CHAIN_data.csv'
|
119 |
if not os.path.exists(csv_path):
|
|
|
121 |
|
122 |
# Load and preprocess data
|
123 |
data = pd.read_csv(csv_path)
|
124 |
+
|
125 |
+
if global_scaler is None:
|
126 |
+
global_scaler = StandardScaler()
|
127 |
+
scaled_data = global_scaler.fit_transform(data[['open', 'high', 'low', 'close', 'volume', 'oi']])
|
128 |
else:
|
129 |
+
scaled_data = global_scaler.transform(data[['open', 'high', 'low', 'close', 'volume', 'oi']])
|
130 |
+
|
131 |
data[['open', 'high', 'low', 'close', 'volume', 'oi']] = scaled_data
|
132 |
|
133 |
# Split data
|
|
|
142 |
val_loader = DataLoader(val_dataset, batch_size=32, shuffle=False)
|
143 |
|
144 |
# Initialize and train the model
|
145 |
+
input_dim = 6
|
146 |
+
hidden_dim = 64
|
147 |
+
output_dim = len(target_cols)
|
148 |
+
|
149 |
+
if global_model is None:
|
150 |
+
global_model = LSTMModel(input_dim, hidden_dim, output_dim)
|
151 |
+
|
152 |
+
global_model, val_loss = train_model(global_model, train_loader, val_loader)
|
153 |
|
154 |
# Make predictions
|
155 |
+
global_model.eval()
|
156 |
predictions = []
|
157 |
actual_values = val_data['close'].values[seq_len-1:]
|
158 |
with torch.no_grad():
|
159 |
for i in range(len(val_dataset)):
|
160 |
features, _ = val_dataset[i]
|
161 |
+
pred = global_model(features.unsqueeze(0)).item()
|
162 |
predictions.append(pred)
|
163 |
|
164 |
# Generate signals and report
|
165 |
signals = generate_signals(predictions, actual_values)
|
166 |
+
report = generate_report(predictions, actual_values, signals, val_loss)
|
167 |
|
168 |
+
return report
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
169 |
|
170 |
+
# Set up the Gradio interface
|
171 |
iface = gr.Interface(
|
172 |
+
fn=predict,
|
173 |
inputs=None,
|
174 |
+
outputs=gr.Textbox(label="Prediction Report"),
|
175 |
title="BankNifty Option Chain Predictor",
|
176 |
+
description="Click 'Submit' to generate predictions and trading signals based on the latest BankNifty option chain data. The model is automatically trained and improved with each run."
|
177 |
)
|
178 |
|
179 |
+
# Launch the app
|
180 |
+
iface.launch()
|
|
|
|
|
|
|
|
|
|