Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -8,27 +8,6 @@ from sklearn.preprocessing import StandardScaler
|
|
| 8 |
from sklearn.model_selection import train_test_split
|
| 9 |
import gradio as gr
|
| 10 |
import os
|
| 11 |
-
import time
|
| 12 |
-
from fastapi import FastAPI, BackgroundTasks
|
| 13 |
-
from fastapi.middleware.cors import CORSMiddleware
|
| 14 |
-
import asyncio
|
| 15 |
-
|
| 16 |
-
# FastAPI app
|
| 17 |
-
app = FastAPI()
|
| 18 |
-
|
| 19 |
-
# Add CORS middleware
|
| 20 |
-
app.add_middleware(
|
| 21 |
-
CORSMiddleware,
|
| 22 |
-
allow_origins=["*"],
|
| 23 |
-
allow_credentials=True,
|
| 24 |
-
allow_methods=["*"],
|
| 25 |
-
allow_headers=["*"],
|
| 26 |
-
)
|
| 27 |
-
|
| 28 |
-
# Global variables
|
| 29 |
-
model = None
|
| 30 |
-
scaler = None
|
| 31 |
-
latest_report = "Initializing..."
|
| 32 |
|
| 33 |
# Define the Dataset class
|
| 34 |
class BankNiftyDataset(Dataset):
|
|
@@ -64,11 +43,13 @@ class LSTMModel(nn.Module):
|
|
| 64 |
return out
|
| 65 |
|
| 66 |
# Function to train the model
|
| 67 |
-
def train_model(train_loader, val_loader, num_epochs=10):
|
| 68 |
-
global model
|
| 69 |
criterion = nn.MSELoss()
|
| 70 |
optimizer = optim.Adam(model.parameters(), lr=0.001)
|
| 71 |
|
|
|
|
|
|
|
|
|
|
| 72 |
for epoch in range(num_epochs):
|
| 73 |
model.train()
|
| 74 |
for features, labels in train_loader:
|
|
@@ -87,6 +68,13 @@ def train_model(train_loader, val_loader, num_epochs=10):
|
|
| 87 |
val_loss /= len(val_loader)
|
| 88 |
|
| 89 |
print(f"Epoch {epoch+1}/{num_epochs}, Validation Loss: {val_loss:.4f}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
|
| 91 |
# Function to generate trading signals
|
| 92 |
def generate_signals(predictions, actual_values, stop_loss_threshold=0.05):
|
|
@@ -101,7 +89,7 @@ def generate_signals(predictions, actual_values, stop_loss_threshold=0.05):
|
|
| 101 |
return signals
|
| 102 |
|
| 103 |
# Function to generate a report
|
| 104 |
-
def generate_report(predictions, actual_values, signals):
|
| 105 |
report = []
|
| 106 |
cumulative_profit = 0
|
| 107 |
for i in range(len(signals)):
|
|
@@ -115,12 +103,17 @@ def generate_report(predictions, actual_values, signals):
|
|
| 115 |
|
| 116 |
total_profit = cumulative_profit
|
| 117 |
report.append(f"Total Profit: {total_profit:.2f}")
|
|
|
|
| 118 |
return "\n".join(report)
|
| 119 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
# Function to process data and make predictions
|
| 121 |
def predict():
|
| 122 |
-
global
|
| 123 |
-
|
| 124 |
# Load the pre-existing CSV file
|
| 125 |
csv_path = 'BANKNIFTY_OPTION_CHAIN_data.csv'
|
| 126 |
if not os.path.exists(csv_path):
|
|
@@ -128,11 +121,13 @@ def predict():
|
|
| 128 |
|
| 129 |
# Load and preprocess data
|
| 130 |
data = pd.read_csv(csv_path)
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
|
|
|
| 134 |
else:
|
| 135 |
-
scaled_data =
|
|
|
|
| 136 |
data[['open', 'high', 'low', 'close', 'volume', 'oi']] = scaled_data
|
| 137 |
|
| 138 |
# Split data
|
|
@@ -147,60 +142,39 @@ def predict():
|
|
| 147 |
val_loader = DataLoader(val_dataset, batch_size=32, shuffle=False)
|
| 148 |
|
| 149 |
# Initialize and train the model
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
|
|
|
| 157 |
|
| 158 |
# Make predictions
|
| 159 |
-
|
| 160 |
predictions = []
|
| 161 |
actual_values = val_data['close'].values[seq_len-1:]
|
| 162 |
with torch.no_grad():
|
| 163 |
for i in range(len(val_dataset)):
|
| 164 |
features, _ = val_dataset[i]
|
| 165 |
-
pred =
|
| 166 |
predictions.append(pred)
|
| 167 |
|
| 168 |
# Generate signals and report
|
| 169 |
signals = generate_signals(predictions, actual_values)
|
| 170 |
-
|
| 171 |
|
| 172 |
-
return
|
| 173 |
-
|
| 174 |
-
# Background task to update the model and report
|
| 175 |
-
async def update_model_and_report():
|
| 176 |
-
global latest_report
|
| 177 |
-
while True:
|
| 178 |
-
latest_report = predict()
|
| 179 |
-
await asyncio.sleep(3600) # Update every hour
|
| 180 |
-
|
| 181 |
-
# Startup event to begin the background task
|
| 182 |
-
@app.on_event("startup")
|
| 183 |
-
async def startup_event():
|
| 184 |
-
background_tasks = BackgroundTasks()
|
| 185 |
-
background_tasks.add_task(update_model_and_report)
|
| 186 |
-
await background_tasks()
|
| 187 |
-
|
| 188 |
-
# Gradio interface
|
| 189 |
-
def gradio_interface():
|
| 190 |
-
return latest_report
|
| 191 |
|
|
|
|
| 192 |
iface = gr.Interface(
|
| 193 |
-
fn=
|
| 194 |
inputs=None,
|
| 195 |
-
outputs=gr.Textbox(label="
|
| 196 |
title="BankNifty Option Chain Predictor",
|
| 197 |
-
description="
|
| 198 |
)
|
| 199 |
|
| 200 |
-
#
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
# Run the FastAPI app
|
| 204 |
-
if __name__ == "__main__":
|
| 205 |
-
import uvicorn
|
| 206 |
-
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|
|
|
| 8 |
from sklearn.model_selection import train_test_split
|
| 9 |
import gradio as gr
|
| 10 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
# Define the Dataset class
|
| 13 |
class BankNiftyDataset(Dataset):
|
|
|
|
| 43 |
return out
|
| 44 |
|
| 45 |
# Function to train the model
|
| 46 |
+
def train_model(model, train_loader, val_loader, num_epochs=10):
|
|
|
|
| 47 |
criterion = nn.MSELoss()
|
| 48 |
optimizer = optim.Adam(model.parameters(), lr=0.001)
|
| 49 |
|
| 50 |
+
best_val_loss = float('inf')
|
| 51 |
+
best_model = None
|
| 52 |
+
|
| 53 |
for epoch in range(num_epochs):
|
| 54 |
model.train()
|
| 55 |
for features, labels in train_loader:
|
|
|
|
| 68 |
val_loss /= len(val_loader)
|
| 69 |
|
| 70 |
print(f"Epoch {epoch+1}/{num_epochs}, Validation Loss: {val_loss:.4f}")
|
| 71 |
+
|
| 72 |
+
if val_loss < best_val_loss:
|
| 73 |
+
best_val_loss = val_loss
|
| 74 |
+
best_model = model.state_dict().copy()
|
| 75 |
+
|
| 76 |
+
model.load_state_dict(best_model)
|
| 77 |
+
return model, best_val_loss
|
| 78 |
|
| 79 |
# Function to generate trading signals
|
| 80 |
def generate_signals(predictions, actual_values, stop_loss_threshold=0.05):
|
|
|
|
| 89 |
return signals
|
| 90 |
|
| 91 |
# Function to generate a report
|
| 92 |
+
def generate_report(predictions, actual_values, signals, val_loss):
|
| 93 |
report = []
|
| 94 |
cumulative_profit = 0
|
| 95 |
for i in range(len(signals)):
|
|
|
|
| 103 |
|
| 104 |
total_profit = cumulative_profit
|
| 105 |
report.append(f"Total Profit: {total_profit:.2f}")
|
| 106 |
+
report.append(f"Model Validation Loss: {val_loss:.4f}")
|
| 107 |
return "\n".join(report)
|
| 108 |
|
| 109 |
+
# Global variables to store the model and scaler
|
| 110 |
+
global_model = None
|
| 111 |
+
global_scaler = None
|
| 112 |
+
|
| 113 |
# Function to process data and make predictions
|
| 114 |
def predict():
|
| 115 |
+
global global_model, global_scaler
|
| 116 |
+
|
| 117 |
# Load the pre-existing CSV file
|
| 118 |
csv_path = 'BANKNIFTY_OPTION_CHAIN_data.csv'
|
| 119 |
if not os.path.exists(csv_path):
|
|
|
|
| 121 |
|
| 122 |
# Load and preprocess data
|
| 123 |
data = pd.read_csv(csv_path)
|
| 124 |
+
|
| 125 |
+
if global_scaler is None:
|
| 126 |
+
global_scaler = StandardScaler()
|
| 127 |
+
scaled_data = global_scaler.fit_transform(data[['open', 'high', 'low', 'close', 'volume', 'oi']])
|
| 128 |
else:
|
| 129 |
+
scaled_data = global_scaler.transform(data[['open', 'high', 'low', 'close', 'volume', 'oi']])
|
| 130 |
+
|
| 131 |
data[['open', 'high', 'low', 'close', 'volume', 'oi']] = scaled_data
|
| 132 |
|
| 133 |
# Split data
|
|
|
|
| 142 |
val_loader = DataLoader(val_dataset, batch_size=32, shuffle=False)
|
| 143 |
|
| 144 |
# Initialize and train the model
|
| 145 |
+
input_dim = 6
|
| 146 |
+
hidden_dim = 64
|
| 147 |
+
output_dim = len(target_cols)
|
| 148 |
+
|
| 149 |
+
if global_model is None:
|
| 150 |
+
global_model = LSTMModel(input_dim, hidden_dim, output_dim)
|
| 151 |
+
|
| 152 |
+
global_model, val_loss = train_model(global_model, train_loader, val_loader)
|
| 153 |
|
| 154 |
# Make predictions
|
| 155 |
+
global_model.eval()
|
| 156 |
predictions = []
|
| 157 |
actual_values = val_data['close'].values[seq_len-1:]
|
| 158 |
with torch.no_grad():
|
| 159 |
for i in range(len(val_dataset)):
|
| 160 |
features, _ = val_dataset[i]
|
| 161 |
+
pred = global_model(features.unsqueeze(0)).item()
|
| 162 |
predictions.append(pred)
|
| 163 |
|
| 164 |
# Generate signals and report
|
| 165 |
signals = generate_signals(predictions, actual_values)
|
| 166 |
+
report = generate_report(predictions, actual_values, signals, val_loss)
|
| 167 |
|
| 168 |
+
return report
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 169 |
|
| 170 |
+
# Set up the Gradio interface
|
| 171 |
iface = gr.Interface(
|
| 172 |
+
fn=predict,
|
| 173 |
inputs=None,
|
| 174 |
+
outputs=gr.Textbox(label="Prediction Report"),
|
| 175 |
title="BankNifty Option Chain Predictor",
|
| 176 |
+
description="Click 'Submit' to generate predictions and trading signals based on the latest BankNifty option chain data. The model is automatically trained and improved with each run."
|
| 177 |
)
|
| 178 |
|
| 179 |
+
# Launch the app
|
| 180 |
+
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|