qwen2.5 / app.py
Avinash109's picture
Create app.py
bba8253 verified
raw
history blame
4.22 kB
import streamlit as st
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
# Set Streamlit page configuration
st.set_page_config(
page_title="Qwen2.5-Coder Chat",
page_icon="πŸ’¬",
layout="wide",
)
# Title of the app
st.title("πŸ’¬ Qwen2.5-Coder Chat Interface")
# Initialize session state for messages
if 'messages' not in st.session_state:
st.session_state['messages'] = []
# Function to load the model
@st.cache_resource
def load_model():
model_name = "Qwen/Qwen2.5-Coder-32B-Instruct" # Replace with your model path or name
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16, # Use appropriate dtype
device_map='auto' # Automatically choose device (GPU/CPU)
)
return tokenizer, model
# Load tokenizer and model
with st.spinner("Loading model... This may take a while..."):
tokenizer, model = load_model()
# Function to generate model response
def generate_response(prompt, max_tokens=2048):
inputs = tokenizer.encode(prompt, return_tensors='pt').to(model.device)
# Generate response
with torch.no_grad():
outputs = model.generate(
inputs,
max_length=max_tokens,
temperature=0.7, # Adjust for creativity
top_p=0.9, # Nucleus sampling
do_sample=True, # Enable sampling
num_return_sequences=1
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Remove the prompt from the response
response = response[len(prompt):].strip()
return response
# Layout: Two columns, main chat and sidebar
chat_col, sidebar_col = st.columns([4, 1])
with chat_col:
# Display chat messages
for message in st.session_state['messages']:
if message['role'] == 'user':
st.markdown(f"**You:** {message['content']}")
else:
st.markdown(f"**Qwen2.5-Coder:** {message['content']}")
# Input area for user
with st.form(key='chat_form', clear_on_submit=True):
user_input = st.text_area("You:", height=100)
submit_button = st.form_submit_button(label='Send')
if submit_button and user_input:
# Append user message
st.session_state['messages'].append({'role': 'user', 'content': user_input})
# Generate and append model response
with st.spinner("Qwen2.5-Coder is typing..."):
response = generate_response(user_input, max_tokens=2048)
st.session_state['messages'].append({'role': 'assistant', 'content': response})
# Rerun to display new messages
st.experimental_rerun()
with sidebar_col:
st.sidebar.header("Settings")
max_tokens = st.sidebar.slider(
"Maximum Tokens",
min_value=512,
max_value=4096,
value=2048,
step=256,
help="Set the maximum number of tokens for the model's response."
)
temperature = st.sidebar.slider(
"Temperature",
min_value=0.1,
max_value=1.0,
value=0.7,
step=0.1,
help="Controls the randomness of the model's output."
)
top_p = st.sidebar.slider(
"Top-p (Nucleus Sampling)",
min_value=0.1,
max_value=1.0,
value=0.9,
step=0.1,
help="Controls the diversity of the model's output."
)
if st.sidebar.button("Clear Chat"):
st.session_state['messages'] = []
st.experimental_rerun()
# Update the generate_response function to use sidebar settings
def generate_response(prompt):
inputs = tokenizer.encode(prompt, return_tensors='pt').to(model.device)
# Generate response
with torch.no_grad():
outputs = model.generate(
inputs,
max_length=max_tokens,
temperature=temperature,
top_p=top_p,
do_sample=True,
num_return_sequences=1
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Remove the prompt from the response
response = response[len(prompt):].strip()
return response