Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| import torch | |
| from transformers import AutoTokenizer, AutoModelForCausalLM | |
| import datetime | |
| import gc | |
| import os | |
| # Enable memory efficient options | |
| os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:128' | |
| # Set page configuration | |
| st.set_page_config( | |
| page_title="Qwen2.5-Coder Chat", | |
| page_icon="π¬", | |
| layout="wide", | |
| ) | |
| # Initialize session state | |
| if 'messages' not in st.session_state: | |
| st.session_state.messages = [] | |
| if 'model_loaded' not in st.session_state: | |
| st.session_state.model_loaded = False | |
| def load_model_and_tokenizer(): | |
| try: | |
| model_name = "Qwen/Qwen2.5-Coder-3B-Instruct" | |
| with st.spinner("π Loading tokenizer..."): | |
| # Load tokenizer first | |
| tokenizer = AutoTokenizer.from_pretrained( | |
| model_name, | |
| trust_remote_code=True | |
| ) | |
| with st.spinner("π Loading model... (this may take a few minutes on CPU)"): | |
| # Load model with 8-bit quantization for CPU | |
| model = AutoModelForCausalLM.from_pretrained( | |
| model_name, | |
| device_map={"": "cpu"}, | |
| trust_remote_code=True, | |
| low_cpu_mem_usage=True, | |
| torch_dtype=torch.float32, | |
| load_in_8bit=True # Enable 8-bit quantization | |
| ) | |
| # Force CPU mode and eval mode | |
| model = model.to("cpu").eval() | |
| # Clear memory after loading | |
| gc.collect() | |
| torch.cuda.empty_cache() if torch.cuda.is_available() else None | |
| st.session_state.model_loaded = True | |
| return tokenizer, model | |
| except Exception as e: | |
| st.error(f"β Error loading model: {str(e)}") | |
| return None, None | |
| def generate_response(prompt, model, tokenizer, max_length=256): | |
| try: | |
| # Clear memory before generation | |
| gc.collect() | |
| # Tokenize with shorter maximum length | |
| inputs = tokenizer( | |
| prompt, | |
| return_tensors="pt", | |
| max_length=512, | |
| truncation=True | |
| ).to("cpu") | |
| # Generate with minimal parameters for CPU | |
| with torch.no_grad(), st.spinner("π€ Thinking... (please be patient)"): | |
| outputs = model.generate( | |
| **inputs, | |
| max_new_tokens=max_length, | |
| temperature=0.7, | |
| top_p=0.9, | |
| do_sample=True, | |
| pad_token_id=tokenizer.pad_token_id, | |
| eos_token_id=tokenizer.eos_token_id, | |
| num_beams=1, # Disable beam search | |
| early_stopping=True | |
| ) | |
| # Clear memory after generation | |
| gc.collect() | |
| response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| return response[len(prompt):].strip() | |
| except torch.cuda.OutOfMemoryError: | |
| st.error("πΎ Memory exceeded. Try reducing the maximum length.") | |
| return None | |
| except Exception as e: | |
| st.error(f"β Error: {str(e)}") | |
| return None | |
| # Main UI | |
| st.title("π¬ Qwen2.5-Coder Chat") | |
| # Sidebar with minimal settings | |
| with st.sidebar: | |
| st.header("βοΈ Settings") | |
| max_length = st.slider( | |
| "Response Length π", | |
| min_value=64, | |
| max_value=512, | |
| value=256, | |
| step=64, | |
| help="Shorter lengths are recommended for CPU" | |
| ) | |
| if st.button("ποΈ Clear Conversation"): | |
| st.session_state.messages = [] | |
| st.rerun() | |
| # Load model | |
| if not st.session_state.model_loaded: | |
| tokenizer, model = load_model_and_tokenizer() | |
| if model is None: | |
| st.stop() | |
| else: | |
| tokenizer, model = load_model_and_tokenizer() | |
| # Display conversation history | |
| for message in st.session_state.messages: | |
| with st.chat_message(message["role"]): | |
| st.markdown(f"{message['content']}\n\n_{message['timestamp']}_") | |
| # Chat input | |
| if prompt := st.chat_input("π Ask me anything about coding..."): | |
| # Add user message | |
| timestamp = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S") | |
| st.session_state.messages.append({ | |
| "role": "user", | |
| "content": prompt, | |
| "timestamp": timestamp | |
| }) | |
| # Display user message | |
| with st.chat_message("user"): | |
| st.markdown(f"{prompt}\n\n_{timestamp}_") | |
| # Generate and display response | |
| with st.chat_message("assistant"): | |
| # Keep only last message for context to reduce memory usage | |
| conversation = f"Human: {prompt}\nAssistant:" | |
| response = generate_response( | |
| conversation, | |
| model, | |
| tokenizer, | |
| max_length=max_length | |
| ) | |
| if response: | |
| timestamp = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S") | |
| st.markdown(f"{response}\n\n_{timestamp}_") | |
| # Add response to chat history | |
| st.session_state.messages.append({ | |
| "role": "assistant", | |
| "content": response, | |
| "timestamp": timestamp | |
| }) | |
| else: | |
| st.error("β Failed to generate response. Please try again with a shorter length.") | |
| # Clear memory after response | |
| gc.collect() |