Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,129 +1,139 @@
|
|
1 |
-
import os
|
2 |
import streamlit as st
|
3 |
import torch
|
4 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
import datetime
|
6 |
|
7 |
-
#
|
8 |
st.set_page_config(
|
9 |
-
page_title="
|
10 |
page_icon="π¬",
|
11 |
layout="wide"
|
12 |
)
|
13 |
|
14 |
-
#
|
15 |
-
os.environ["TRANSFORMERS_CACHE"] = "/root/.cache/huggingface"
|
16 |
-
|
17 |
-
# Initialize session state for conversation history
|
18 |
if 'messages' not in st.session_state:
|
19 |
st.session_state.messages = []
|
20 |
|
21 |
-
# Cache model loading to prevent re-loading each session
|
22 |
@st.cache_resource
|
23 |
def load_model_and_tokenizer():
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
-
|
37 |
-
model
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
-
#
|
48 |
st.title("π¬ Qwen2.5-Coder Chat")
|
49 |
|
50 |
# Sidebar settings
|
51 |
with st.sidebar:
|
52 |
-
st.header("Settings")
|
53 |
|
|
|
54 |
max_length = st.slider(
|
55 |
-
"Maximum Length",
|
56 |
min_value=64,
|
57 |
-
max_value=
|
58 |
-
value=
|
59 |
-
step=64
|
60 |
-
help="Maximum number of tokens to generate"
|
61 |
)
|
62 |
|
63 |
temperature = st.slider(
|
64 |
-
"Temperature",
|
65 |
min_value=0.1,
|
66 |
-
max_value=
|
67 |
-
value=0.
|
68 |
-
step=0.1
|
69 |
-
help="Higher values make output more random, lower values more deterministic"
|
70 |
)
|
71 |
|
72 |
top_p = st.slider(
|
73 |
-
"Top P",
|
74 |
min_value=0.1,
|
75 |
max_value=1.0,
|
76 |
-
value=0.
|
77 |
-
step=0.1
|
78 |
-
help="Nucleus sampling: higher values consider more tokens, lower values are more focused"
|
79 |
)
|
80 |
|
81 |
-
|
|
|
82 |
st.session_state.messages = []
|
83 |
st.rerun()
|
84 |
|
85 |
-
# Load model
|
86 |
try:
|
87 |
-
|
88 |
-
tokenizer, model = load_model_and_tokenizer()
|
89 |
except Exception as e:
|
90 |
-
st.error(
|
91 |
st.stop()
|
92 |
|
93 |
-
# Response generation function
|
94 |
-
def generate_response(prompt, max_new_tokens=256, temperature=0.5, top_p=0.8):
|
95 |
-
"""Generate response from the model"""
|
96 |
-
try:
|
97 |
-
# Tokenize the input
|
98 |
-
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
99 |
-
|
100 |
-
# Generate response
|
101 |
-
with torch.no_grad():
|
102 |
-
outputs = model.generate(
|
103 |
-
**inputs,
|
104 |
-
max_new_tokens=max_new_tokens,
|
105 |
-
temperature=temperature,
|
106 |
-
top_p=top_p,
|
107 |
-
do_sample=True,
|
108 |
-
pad_token_id=tokenizer.pad_token_id,
|
109 |
-
eos_token_id=tokenizer.eos_token_id,
|
110 |
-
)
|
111 |
-
|
112 |
-
# Decode and return response
|
113 |
-
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
114 |
-
return response[len(prompt):].strip() # Extract only the model's response
|
115 |
-
|
116 |
-
except Exception as e:
|
117 |
-
st.error(f"Error generating response: {str(e)}")
|
118 |
-
return None
|
119 |
-
|
120 |
# Display conversation history
|
121 |
-
for message in st.session_state.messages
|
122 |
with st.chat_message(message["role"]):
|
123 |
-
st.
|
124 |
|
125 |
# Chat input
|
126 |
-
if prompt := st.chat_input("Ask me anything about coding..."):
|
127 |
# Add user message
|
128 |
timestamp = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
129 |
st.session_state.messages.append({
|
@@ -134,31 +144,34 @@ if prompt := st.chat_input("Ask me anything about coding..."):
|
|
134 |
|
135 |
# Display user message
|
136 |
with st.chat_message("user"):
|
137 |
-
st.
|
138 |
|
139 |
# Generate and display response
|
140 |
with st.chat_message("assistant"):
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
|
|
|
|
|
|
|
|
|
|
154 |
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
"timestamp": timestamp
|
164 |
-
})
|
|
|
|
|
1 |
import streamlit as st
|
2 |
import torch
|
3 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
import datetime
|
5 |
|
6 |
+
# Set page configuration
|
7 |
st.set_page_config(
|
8 |
+
page_title="Qwen2.5-Coder Chat",
|
9 |
page_icon="π¬",
|
10 |
layout="wide"
|
11 |
)
|
12 |
|
13 |
+
# Initialize session state
|
|
|
|
|
|
|
14 |
if 'messages' not in st.session_state:
|
15 |
st.session_state.messages = []
|
16 |
|
|
|
17 |
@st.cache_resource
|
18 |
def load_model_and_tokenizer():
|
19 |
+
try:
|
20 |
+
# Display loading message
|
21 |
+
with st.spinner("π Loading model and tokenizer... This might take a few minutes..."):
|
22 |
+
model_name = "Qwen/Qwen2.5-Coder-3B-Instruct"
|
23 |
+
|
24 |
+
# Load tokenizer first
|
25 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
26 |
+
model_name,
|
27 |
+
trust_remote_code=True
|
28 |
+
)
|
29 |
+
|
30 |
+
# Determine device and display info
|
31 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
32 |
+
st.info(f"π» Using device: {device}")
|
33 |
+
|
34 |
+
# Load model with appropriate settings
|
35 |
+
if device == "cuda":
|
36 |
+
model = AutoModelForCausalLM.from_pretrained(
|
37 |
+
model_name,
|
38 |
+
torch_dtype=torch.float16, # Use float16 for GPU
|
39 |
+
device_map="auto",
|
40 |
+
trust_remote_code=True
|
41 |
+
).eval() # Set to evaluation mode
|
42 |
+
else:
|
43 |
+
model = AutoModelForCausalLM.from_pretrained(
|
44 |
+
model_name,
|
45 |
+
device_map={"": device},
|
46 |
+
trust_remote_code=True,
|
47 |
+
low_cpu_mem_usage=True
|
48 |
+
).eval() # Set to evaluation mode
|
49 |
+
|
50 |
+
return tokenizer, model
|
51 |
+
except Exception as e:
|
52 |
+
st.error(f"β Error loading model: {str(e)}")
|
53 |
+
raise e
|
54 |
|
55 |
+
def generate_response(prompt, model, tokenizer, max_new_tokens=512, temperature=0.7, top_p=0.9):
|
56 |
+
"""Generate response from the model with better error handling"""
|
57 |
+
try:
|
58 |
+
# Tokenize input
|
59 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
60 |
+
|
61 |
+
# Generate response with progress bar
|
62 |
+
with torch.no_grad(), st.spinner("π€ Thinking..."):
|
63 |
+
outputs = model.generate(
|
64 |
+
**inputs,
|
65 |
+
max_new_tokens=max_new_tokens,
|
66 |
+
temperature=temperature,
|
67 |
+
top_p=top_p,
|
68 |
+
do_sample=True,
|
69 |
+
pad_token_id=tokenizer.pad_token_id,
|
70 |
+
eos_token_id=tokenizer.eos_token_id,
|
71 |
+
repetition_penalty=1.1,
|
72 |
+
no_repeat_ngram_size=3
|
73 |
+
)
|
74 |
+
|
75 |
+
# Decode and return response
|
76 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
77 |
+
return response[len(prompt):].strip()
|
78 |
|
79 |
+
except torch.cuda.OutOfMemoryError:
|
80 |
+
st.error("πΎ GPU memory exceeded. Try reducing the maximum length or clearing the conversation.")
|
81 |
+
return None
|
82 |
+
except Exception as e:
|
83 |
+
st.error(f"β Error generating response: {str(e)}")
|
84 |
+
return None
|
85 |
|
86 |
+
# Main UI
|
87 |
st.title("π¬ Qwen2.5-Coder Chat")
|
88 |
|
89 |
# Sidebar settings
|
90 |
with st.sidebar:
|
91 |
+
st.header("βοΈ Settings")
|
92 |
|
93 |
+
# Model settings
|
94 |
max_length = st.slider(
|
95 |
+
"Maximum Length π",
|
96 |
min_value=64,
|
97 |
+
max_value=2048,
|
98 |
+
value=512,
|
99 |
+
step=64
|
|
|
100 |
)
|
101 |
|
102 |
temperature = st.slider(
|
103 |
+
"Temperature π‘οΈ",
|
104 |
min_value=0.1,
|
105 |
+
max_value=2.0,
|
106 |
+
value=0.7,
|
107 |
+
step=0.1
|
|
|
108 |
)
|
109 |
|
110 |
top_p = st.slider(
|
111 |
+
"Top P π",
|
112 |
min_value=0.1,
|
113 |
max_value=1.0,
|
114 |
+
value=0.9,
|
115 |
+
step=0.1
|
|
|
116 |
)
|
117 |
|
118 |
+
# Clear conversation button
|
119 |
+
if st.button("ποΈ Clear Conversation"):
|
120 |
st.session_state.messages = []
|
121 |
st.rerun()
|
122 |
|
123 |
+
# Load model
|
124 |
try:
|
125 |
+
tokenizer, model = load_model_and_tokenizer()
|
|
|
126 |
except Exception as e:
|
127 |
+
st.error("β Failed to load model. Please check the logs and refresh the page.")
|
128 |
st.stop()
|
129 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
# Display conversation history
|
131 |
+
for message in st.session_state.messages:
|
132 |
with st.chat_message(message["role"]):
|
133 |
+
st.markdown(f"{message['content']}\n\n_{message['timestamp']}_")
|
134 |
|
135 |
# Chat input
|
136 |
+
if prompt := st.chat_input("π Ask me anything about coding..."):
|
137 |
# Add user message
|
138 |
timestamp = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
139 |
st.session_state.messages.append({
|
|
|
144 |
|
145 |
# Display user message
|
146 |
with st.chat_message("user"):
|
147 |
+
st.markdown(f"{prompt}\n\n_{timestamp}_")
|
148 |
|
149 |
# Generate and display response
|
150 |
with st.chat_message("assistant"):
|
151 |
+
# Prepare conversation context (limit to last 3 messages to prevent context overflow)
|
152 |
+
conversation = "\n".join(
|
153 |
+
f"{'Human' if msg['role'] == 'user' else 'Assistant'}: {msg['content']}"
|
154 |
+
for msg in st.session_state.messages[-3:]
|
155 |
+
) + "\nAssistant:"
|
156 |
+
|
157 |
+
response = generate_response(
|
158 |
+
conversation,
|
159 |
+
model,
|
160 |
+
tokenizer,
|
161 |
+
max_new_tokens=max_length,
|
162 |
+
temperature=temperature,
|
163 |
+
top_p=top_p
|
164 |
+
)
|
165 |
+
|
166 |
+
if response:
|
167 |
+
timestamp = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
168 |
+
st.markdown(f"{response}\n\n_{timestamp}_")
|
169 |
|
170 |
+
# Add response to chat history
|
171 |
+
st.session_state.messages.append({
|
172 |
+
"role": "assistant",
|
173 |
+
"content": response,
|
174 |
+
"timestamp": timestamp
|
175 |
+
})
|
176 |
+
else:
|
177 |
+
st.error("β Failed to generate response. Please try again with different settings.")
|
|
|
|