File size: 15,285 Bytes
401ee04
 
 
 
 
9baa986
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
401ee04
 
 
 
 
 
 
 
 
 
 
 
 
764c2d9
 
 
9baa986
401ee04
 
 
 
 
 
 
 
 
764c2d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
401ee04
 
 
 
 
764c2d9
 
 
 
401ee04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
764c2d9
 
401ee04
 
 
 
 
 
764c2d9
401ee04
764c2d9
 
 
 
 
 
 
 
 
 
 
 
401ee04
 
 
 
 
 
 
 
 
 
 
764c2d9
401ee04
 
 
764c2d9
 
401ee04
 
764c2d9
 
401ee04
 
 
 
 
764c2d9
401ee04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
764c2d9
401ee04
764c2d9
401ee04
 
 
 
 
 
764c2d9
401ee04
 
764c2d9
 
 
 
 
 
 
 
401ee04
 
764c2d9
 
401ee04
764c2d9
401ee04
 
 
 
 
764c2d9
 
401ee04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
764c2d9
401ee04
 
 
 
 
 
 
 
 
 
 
 
764c2d9
 
 
 
401ee04
 
764c2d9
 
401ee04
 
 
 
764c2d9
401ee04
764c2d9
401ee04
 
 
 
 
764c2d9
401ee04
 
764c2d9
401ee04
 
 
 
 
 
 
 
764c2d9
401ee04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
764c2d9
 
401ee04
 
 
764c2d9
401ee04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
764c2d9
401ee04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
764c2d9
401ee04
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
import gradio as gr
import os
import threading
import time
from pathlib import Path
from huggingface_hub import hf_hub_download,login

# Handle HuggingFace authentication
def setup_hf_auth():
    """Setup HuggingFace authentication if token is available"""
    hf_token = os.environ.get("HF_TOKEN")
    if hf_token and hf_token.strip():
        try:
            login(token=hf_token, add_to_git_credential=False)
            print("✅ Successfully logged in to HuggingFace Hub")
            return True
        except Exception as e:
            print(f"⚠️ HuggingFace login failed: {e}")
            return False
    else:
        print("ℹ️ No HF_TOKEN found, proceeding without authentication")
        return False

# Setup authentication on import
setup_hf_auth()

# Try to import llama-cpp-python, fallback to instructions if not available
try:
    from llama_cpp import Llama
    LLAMA_CPP_AVAILABLE = True
except ImportError:
    LLAMA_CPP_AVAILABLE = False
    print("llama-cpp-python not installed. Please install it with: pip install llama-cpp-python")

# Global variables for model
model = None
model_loaded = False

# HuggingFace repository information
HF_REPO_ID = "Axcel1/MMed-llama-alpaca-Q4_K_M-GGUF"
HF_FILENAME = "mmed-llama-alpaca-q4_k_m.gguf"

def find_gguf_file(directory="."):
    """Find GGUF files in the specified directory"""
    gguf_files = []
    for root, dirs, files in os.walk(directory):
        for file in files:
            if file.endswith('.gguf'):
                gguf_files.append(os.path.join(root, file))
    return gguf_files

def download_model_from_hf(repo_id=HF_REPO_ID, filename=HF_FILENAME):
    """Download GGUF model from HuggingFace Hub"""
    try:
        print(f"Downloading model from {repo_id}/{filename}...")
        gguf_path = hf_hub_download(
            repo_id=repo_id,
            filename=filename,
            cache_dir="./models",
            resume_download=True  # Resume partial downloads
        )
        print(f"Model downloaded to: {gguf_path}")
        return gguf_path, None
    except Exception as e:
        error_msg = f"Error downloading model: {str(e)}"
        print(error_msg)
        return None, error_msg

def get_optimal_settings():
    """Get optimal CPU threads and GPU layers automatically"""
    # Auto-detect CPU threads (use all available cores)
    n_threads = os.cpu_count()
    
    # For Hugging Face Spaces, limit threads to avoid resource issues
    if n_threads and n_threads > 4:
        n_threads = 4
    
    # Auto-detect GPU layers (try to use GPU if available)
    n_gpu_layers = 0
    try:
        # Try to detect if CUDA is available
        import subprocess
        result = subprocess.run(['nvidia-smi'], capture_output=True, text=True)
        if result.returncode == 0:
            # NVIDIA GPU detected, use more layers
            n_gpu_layers = 35  # Good default for Llama-3-8B
    except:
        # No GPU or CUDA not available
        n_gpu_layers = 0
    
    return n_threads, n_gpu_layers

def load_model_from_gguf(gguf_path=None, n_ctx=2048, use_hf_download=True):
    """Load the model from a GGUF file with automatic optimization"""
    global model, model_loaded
    
    if not LLAMA_CPP_AVAILABLE:
        return False, "llama-cpp-python not installed. Please install it with: pip install llama-cpp-python"
    
    try:
        # If no path provided, try different approaches
        if gguf_path is None:
            if use_hf_download:
                # Try to download from HuggingFace first
                gguf_path, error = download_model_from_hf()
                if error:
                    return False, f"❌ Failed to download from HuggingFace: {error}"
            else:
                # Try to find local GGUF files
                gguf_files = find_gguf_file()
                if not gguf_files:
                    return False, "No GGUF files found in the repository"
                gguf_path = gguf_files[0]  # Use the first one found
                print(f"Found local GGUF file: {gguf_path}")
        
        # Check if file exists
        if not os.path.exists(gguf_path):
            return False, f"GGUF file not found: {gguf_path}"
        
        print(f"Loading model from: {gguf_path}")
        
        # Get optimal settings automatically
        n_threads, n_gpu_layers = get_optimal_settings()
        print(f"Auto-detected settings: {n_threads} CPU threads, {n_gpu_layers} GPU layers")
        
        # Load model with optimized settings for Hugging Face Spaces
        model = Llama(
            model_path=gguf_path,
            n_ctx=n_ctx,  # Context window (configurable)
            n_threads=n_threads,  # CPU threads (limited for Spaces)
            n_gpu_layers=n_gpu_layers,  # Number of layers to offload to GPU
            verbose=False,
            chat_format="llama-3",  # Use Llama-3 chat format
            n_batch=256,  # Smaller batch size for Spaces
            use_mlock=False,  # Disabled for Spaces compatibility
            use_mmap=True,  # Use memory mapping
        )
        
        model_loaded = True
        print("Model loaded successfully!")
        return True, f"✅ Model loaded successfully from {os.path.basename(gguf_path)}\n📊 Context: {n_ctx} tokens\n🖥️ CPU Threads: {n_threads}\n🎮 GPU Layers: {n_gpu_layers}\n📦 Source: {HF_REPO_ID}"
        
    except Exception as e:
        model_loaded = False
        error_msg = f"Error loading model: {str(e)}"
        print(error_msg)
        return False, f"❌ {error_msg}"

def generate_response_stream(message, history, max_tokens=512, temperature=0.7, top_p=0.9, repeat_penalty=1.1):
    """Generate response from the model with streaming"""
    global model, model_loaded
    
    if not model_loaded or model is None:
        yield "Error: Model not loaded. Please load the model first."
        return
    
    try:
        # Format the conversation history for Llama-3
        conversation = []
        
        # Add conversation history
        for human, assistant in history:
            conversation.append({"role": "user", "content": human})
            if assistant:  # Only add if assistant response exists
                conversation.append({"role": "assistant", "content": assistant})
        
        # Add current message
        conversation.append({"role": "user", "content": message})
        
        # Generate response with streaming
        response = ""
        stream = model.create_chat_completion(
            messages=conversation,
            max_tokens=max_tokens,
            temperature=temperature,
            top_p=top_p,
            repeat_penalty=repeat_penalty,
            stream=True,
            stop=["<|eot_id|>", "<|end_of_text|>"]
        )
        
        for chunk in stream:
            if chunk['choices'][0]['delta'].get('content'):
                new_text = chunk['choices'][0]['delta']['content']
                response += new_text
                yield response
                
    except Exception as e:
        yield f"Error generating response: {str(e)}"

def chat_interface(message, history, max_tokens, temperature, top_p, repeat_penalty):
    """Main chat interface function"""
    if not message.strip():
        return history, ""
    
    if not model_loaded:
        history.append((message, "Please load the model first using the 'Load Model' button."))
        return history, ""
    
    # Add user message to history
    history = history + [(message, "")]
    
    # Generate response
    for response in generate_response_stream(message, history[:-1], max_tokens, temperature, top_p, repeat_penalty):
        history[-1] = (message, response)
        yield history, ""

def clear_chat():
    """Clear the chat history"""
    return [], ""

def load_model_interface(context_size, use_hf_download):
    """Interface function to load model with configurable context size"""
    success, message = load_model_from_gguf(gguf_path=None, n_ctx=int(context_size), use_hf_download=use_hf_download)
    return message

def get_available_gguf_files():
    """Get list of available GGUF files"""
    gguf_files = find_gguf_file()
    if not gguf_files:
        return ["No local GGUF files found"]
    return [os.path.basename(f) for f in gguf_files]

def check_model_availability():
    """Check if model is available locally or needs to be downloaded"""
    local_files = find_gguf_file()
    if local_files:
        return f"Local GGUF files found: {len(local_files)}"
    else:
        return "No local GGUF files found. Will download from HuggingFace."

# Create the Gradio interface
def create_interface():
    # Check for available models
    availability_status = check_model_availability()
    
    with gr.Blocks(title="MMed-Llama-Alpaca GGUF Chatbot", theme=gr.themes.Soft()) as demo:
        gr.HTML("""
            <h1 style="text-align: center; color: #2E86AB; margin-bottom: 30px;">
                🦙 MMed-Llama-Alpaca GGUF Chatbot
            </h1>
            <p style="text-align: center; color: #666; margin-bottom: 30px;">
                Chat with the MMed-Llama-Alpaca model (Q4_K_M quantized) for medical assistance!<br>
                <strong>⚠️ This is for educational purposes only. Always consult healthcare professionals for medical advice.</strong>
            </p>
        """)
        
        with gr.Row():
            with gr.Column(scale=4):
                # Chat interface
                chatbot = gr.Chatbot(
                    height=500,
                    show_copy_button=True,
                    bubble_full_width=False,
                    show_label=False,
                    placeholder="Model not loaded. Please load the model first to start chatting."
                )
                
                with gr.Row():
                    msg = gr.Textbox(
                        placeholder="Type your medical question here...",
                        container=False,
                        scale=7,
                        show_label=False
                    )
                    submit_btn = gr.Button("Send", variant="primary", scale=1)
                    clear_btn = gr.Button("Clear", variant="secondary", scale=1)
                
            with gr.Column(scale=1):
                # Model loading section
                gr.HTML("<h3>🔧 Model Control</h3>")
                
                # Model source selection
                use_hf_download = gr.Checkbox(
                    value=True,
                    label="Download from HuggingFace",
                    info="Uncheck to use local GGUF files"
                )
                
                gr.HTML(f"<p style='font-size: 0.9em; color: #666;'><strong>Repository:</strong> {HF_REPO_ID}</p>")
                gr.HTML(f"<p style='font-size: 0.9em; color: #666;'><strong>File:</strong> {HF_FILENAME}</p>")
                
                load_btn = gr.Button("Load Model", variant="primary", size="lg")
                model_status = gr.Textbox(
                    label="Status",
                    value=f"Model not loaded.\n{availability_status}\n⚙️ Auto-optimized: CPU threads & GPU layers auto-detected\n📝 Context size can be configured below",
                    interactive=False,
                    max_lines=6
                )
                
                # Generation parameters
                gr.HTML("<h3>⚙️ Generation Settings</h3>")
                
                # Context size (limited for Spaces)
                context_size = gr.Slider(
                    minimum=512,
                    maximum=4096,
                    value=2048,
                    step=256,
                    label="Context Size",
                    info="Token context window (requires model reload)"
                )
                
                max_tokens = gr.Slider(
                    minimum=50,
                    maximum=1024,
                    value=512,
                    step=50,
                    label="Max Tokens",
                    info="Maximum response length"
                )
                temperature = gr.Slider(
                    minimum=0.1,
                    maximum=2.0,
                    value=0.7,
                    step=0.1,
                    label="Temperature",
                    info="Creativity (higher = more creative)"
                )
                top_p = gr.Slider(
                    minimum=0.1,
                    maximum=1.0,
                    value=0.9,
                    step=0.1,
                    label="Top-p",
                    info="Nucleus sampling"
                )
                repeat_penalty = gr.Slider(
                    minimum=1.0,
                    maximum=1.5,
                    value=1.1,
                    step=0.1,
                    label="Repeat Penalty",
                    info="Penalize repetition"
                )
                
                # Information section
                gr.HTML("""
                    <h3>ℹ️ About</h3>
                    <p><strong>Model:</strong> MMed-Llama-Alpaca</p>
                    <p><strong>Quantization:</strong> Q4_K_M</p>
                    <p><strong>Format:</strong> GGUF (optimized)</p>
                    <p><strong>Backend:</strong> llama-cpp-python</p>
                    <p><strong>Features:</strong> CPU/GPU support, streaming</p>
                    <p><strong>Specialty:</strong> Medical assistance</p>
                    <p><strong>Auto-Optimization:</strong> CPU threads & GPU layers detected automatically</p>
                """)
                
                if not LLAMA_CPP_AVAILABLE:
                    gr.HTML("""
                        <div style="background-color: #ffebee; padding: 10px; border-radius: 5px; margin-top: 10px;">
                            <p style="color: #c62828; margin: 0;"><strong>⚠️ Missing Dependency</strong></p>
                            <p style="color: #c62828; margin: 0; font-size: 0.9em;">
                                Install llama-cpp-python:<br>
                                <code>pip install llama-cpp-python</code>
                            </p>
                        </div>
                    """)
        
        # Event handlers
        load_btn.click(
            load_model_interface,
            inputs=[context_size, use_hf_download],
            outputs=model_status
        )
        
        submit_btn.click(
            chat_interface,
            inputs=[msg, chatbot, max_tokens, temperature, top_p, repeat_penalty],
            outputs=[chatbot, msg]
        )
        
        msg.submit(
            chat_interface,
            inputs=[msg, chatbot, max_tokens, temperature, top_p, repeat_penalty],
            outputs=[chatbot, msg]
        )
        
        clear_btn.click(
            clear_chat,
            outputs=[chatbot, msg]
        )
        
    return demo

if __name__ == "__main__":
    # Create and launch the interface
    demo = create_interface()
    
    # Launch with settings optimized for Hugging Face Spaces
    demo.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=False,
        debug=False,
        show_error=True,
        quiet=False
    )