File size: 16,560 Bytes
401ee04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
import gradio as gr
import os
import threading
import time
from pathlib import Path
from huggingface_hub import login


# Try to import llama-cpp-python, fallback to instructions if not available
try:
    from llama_cpp import Llama
    LLAMA_CPP_AVAILABLE = True
except ImportError:
    LLAMA_CPP_AVAILABLE = False
    print("llama-cpp-python not installed. Please install it with: pip install llama-cpp-python")

hf_token = os.environ.get("HF_TOKEN")

login(token = hf_token)


# Global variables for model
model = None
model_loaded = False

def find_gguf_file(directory="."):
    """Find GGUF files in the specified directory"""
    gguf_files = []
    for root, dirs, files in os.walk(directory):
        for file in files:
            if file.endswith('.gguf'):
                gguf_files.append(os.path.join(root, file))
    return gguf_files

def get_optimal_settings():
    """Get optimal CPU threads and GPU layers automatically"""
    # Auto-detect CPU threads (use all available cores)
    n_threads = os.cpu_count()
    
    # Auto-detect GPU layers (try to use GPU if available)
    n_gpu_layers = 0
    try:
        # Try to detect if CUDA is available
        import subprocess
        result = subprocess.run(['nvidia-smi'], capture_output=True, text=True)
        if result.returncode == 0:
            # NVIDIA GPU detected, use more layers
            n_gpu_layers = 35  # Good default for Llama-3-8B
    except:
        # No GPU or CUDA not available
        n_gpu_layers = 0
    
    return n_threads, n_gpu_layers

def load_model_from_huggingface(repo_id, filename, n_ctx=2048):
    """Load the model from Hugging Face repository"""
    global model, model_loaded
    
    if not LLAMA_CPP_AVAILABLE:
        return False, "llama-cpp-python not installed. Please install it with: pip install llama-cpp-python"
    
    try:
        print(f"Loading model from Hugging Face: {repo_id}/{filename}")
        
        # Get optimal settings automatically
        n_threads, n_gpu_layers = get_optimal_settings()
        print(f"Auto-detected settings: {n_threads} CPU threads, {n_gpu_layers} GPU layers")
        
        # Load model from Hugging Face with optimized settings
        model = Llama.from_pretrained(
            repo_id=repo_id,
            filename=filename,
            n_ctx=n_ctx,  # Context window (configurable)
            n_threads=n_threads,  # CPU threads (auto-detected)
            n_gpu_layers=n_gpu_layers,  # Number of layers to offload to GPU (auto-detected)
            verbose=False,
            chat_format="chatml",  # Use Llama-3 chat format
            n_batch=512,  # Batch size for prompt processing
            use_mlock=True,  # Keep model in memory
            use_mmap=True,  # Use memory mapping
        )
        
        model_loaded = True
        print("Model loaded successfully!")
        return True, f"โœ… Model loaded successfully from {repo_id}/{filename}\n๐Ÿ“Š Context: {n_ctx} tokens\n๐Ÿ–ฅ๏ธ CPU Threads: {n_threads}\n๐ŸŽฎ GPU Layers: {n_gpu_layers}"
        
    except Exception as e:
        model_loaded = False
        error_msg = f"Error loading model: {str(e)}"
        print(error_msg)
        return False, f"โŒ {error_msg}"

def load_model_from_gguf(gguf_path=None, n_ctx=2048):
    """Load the model from a local GGUF file with automatic optimization"""
    global model, model_loaded
    
    if not LLAMA_CPP_AVAILABLE:
        return False, "llama-cpp-python not installed. Please install it with: pip install llama-cpp-python"
    
    try:
        # If no path provided, try to find GGUF files
        if gguf_path is None:
            gguf_files = find_gguf_file()
            if not gguf_files:
                return False, "No GGUF files found in the repository"
            gguf_path = gguf_files[0]  # Use the first one found
            print(f"Found GGUF file: {gguf_path}")
        
        # Check if file exists
        if not os.path.exists(gguf_path):
            return False, f"GGUF file not found: {gguf_path}"
        
        print(f"Loading model from: {gguf_path}")
        
        # Get optimal settings automatically
        n_threads, n_gpu_layers = get_optimal_settings()
        print(f"Auto-detected settings: {n_threads} CPU threads, {n_gpu_layers} GPU layers")
        
        # Load model with optimized settings
        model = Llama(
            model_path=gguf_path,
            n_ctx=n_ctx,  # Context window (configurable)
            n_threads=n_threads,  # CPU threads (auto-detected)
            n_gpu_layers=n_gpu_layers,  # Number of layers to offload to GPU (auto-detected)
            verbose=False,
            chat_format="llama-3",  # Use Llama-3 chat format
            n_batch=512,  # Batch size for prompt processing
            use_mlock=True,  # Keep model in memory
            use_mmap=True,  # Use memory mapping
        )
        
        model_loaded = True
        print("Model loaded successfully!")
        return True, f"โœ… Model loaded successfully from {os.path.basename(gguf_path)}\n๐Ÿ“Š Context: {n_ctx} tokens\n๐Ÿ–ฅ๏ธ CPU Threads: {n_threads}\n๐ŸŽฎ GPU Layers: {n_gpu_layers}"
        
    except Exception as e:
        model_loaded = False
        error_msg = f"Error loading model: {str(e)}"
        print(error_msg)
        return False, f"โŒ {error_msg}"

def generate_response_stream(message, history, max_tokens=512, temperature=0.7, top_p=0.9, repeat_penalty=1.1):
    """Generate response from the model with streaming"""
    global model, model_loaded
    
    if not model_loaded or model is None:
        yield "Error: Model not loaded. Please load the model first."
        return
    
    try:
        # Format the conversation history for Llama-3
        conversation = []
        
        # Add conversation history
        for human, assistant in history:
            conversation.append({"role": "user", "content": human})
            if assistant:  # Only add if assistant response exists
                conversation.append({"role": "assistant", "content": assistant})
        
        # Add current message
        conversation.append({"role": "user", "content": message})
        
        # Generate response with streaming
        response = ""
        stream = model.create_chat_completion(
            messages=conversation,
            max_tokens=max_tokens,
            temperature=temperature,
            top_p=top_p,
            repeat_penalty=repeat_penalty,
            stream=True,
            stop=["<|eot_id|>", "<|end_of_text|>"]
        )
        
        for chunk in stream:
            if chunk['choices'][0]['delta'].get('content'):
                new_text = chunk['choices'][0]['delta']['content']
                response += new_text
                yield response
                
    except Exception as e:
        yield f"Error generating response: {str(e)}"

def chat_interface(message, history, max_tokens, temperature, top_p, repeat_penalty):
    """Main chat interface function"""
    if not message.strip():
        return history, ""
    
    if not model_loaded:
        history.append((message, "Please load the model first using the 'Load Model' button."))
        return history, ""
    
    # Add user message to history
    history = history + [(message, "")]
    
    # Generate response
    for response in generate_response_stream(message, history[:-1], max_tokens, temperature, top_p, repeat_penalty):
        history[-1] = (message, response)
        yield history, ""

def clear_chat():
    """Clear the chat history"""
    return [], ""

def load_model_interface(source_type, gguf_path, repo_id, filename, context_size):
    """Interface function to load model with configurable context size"""
    if source_type == "Hugging Face":
        success, message = load_model_from_huggingface(repo_id, filename, n_ctx=int(context_size))
    else:  # Local file
        success, message = load_model_from_gguf(gguf_path, n_ctx=int(context_size))
    return message

def get_available_gguf_files():
    """Get list of available GGUF files"""
    gguf_files = find_gguf_file()
    if not gguf_files:
        return ["No GGUF files found"]
    return [os.path.basename(f) for f in gguf_files]

# Create the Gradio interface
def create_interface():
    # Get available GGUF files
    gguf_files = find_gguf_file()
    gguf_choices = [os.path.basename(f) for f in gguf_files] if gguf_files else ["No GGUF files found"]
    
    with gr.Blocks(title="Llama-3-8B GGUF Chatbot", theme=gr.themes.Soft()) as demo:
        gr.HTML("""
            <h1 style="text-align: center; color: #2E86AB; margin-bottom: 30px;">
                ๐Ÿฆ™ MMed-Llama-Alpaca GGUF Chatbot
            </h1>
            <p style="text-align: center; color: #666; margin-bottom: 30px;">
                Chat with the MMed-Llama-Alpaca model (Q4_K_M quantized) for medical assistance!
            </p>
        """)
        
        with gr.Row():
            with gr.Column(scale=4):
                # Chat interface
                chatbot = gr.Chatbot(
                    height=500,
                    show_copy_button=True,
                    bubble_full_width=False,
                    show_label=False,
                    placeholder="Model not loaded. Please load the model first to start chatting."
                )
                
                with gr.Row():
                    msg = gr.Textbox(
                        placeholder="Type your message here...",
                        container=False,
                        scale=7,
                        show_label=False
                    )
                    submit_btn = gr.Button("Send", variant="primary", scale=1)
                    clear_btn = gr.Button("Clear", variant="secondary", scale=1)
                
            with gr.Column(scale=1):
                # Model loading section
                gr.HTML("<h3>๐Ÿ”ง Model Control</h3>")
                
                # Model source selection
                source_type = gr.Radio(
                    choices=["Hugging Face", "Local File"],
                    value="Hugging Face",
                    label="Model Source",
                    info="Choose where to load the model from"
                )
                
                # Hugging Face settings
                with gr.Group(visible=True) as hf_group:
                    gr.HTML("<h4>๐Ÿค— Hugging Face Settings</h4>")
                    repo_id = gr.Textbox(
                        value="Axcel1/MMed-llama-alpaca-Q4_K_M-GGUF",
                        label="Repository ID",
                        info="e.g., username/repo-name"
                    )
                    filename = gr.Textbox(
                        value="mmed-llama-alpaca-q4_k_m.gguf",
                        label="Filename",
                        info="GGUF filename in the repository"
                    )
                
                # Local file settings
                with gr.Group(visible=False) as local_group:
                    gr.HTML("<h4>๐Ÿ“ Local File Settings</h4>")
                    if gguf_files:
                        gguf_dropdown = gr.Dropdown(
                            choices=gguf_choices,
                            value=gguf_choices[0] if gguf_choices[0] != "No GGUF files found" else None,
                            label="Select GGUF File",
                            info="Choose which GGUF file to load"
                        )
                    else:
                        gguf_dropdown = gr.Textbox(
                            value="No GGUF files found in repository",
                            label="GGUF File",
                            interactive=False
                        )
                
                load_btn = gr.Button("Load Model", variant="primary", size="lg")
                model_status = gr.Textbox(
                    label="Status",
                    value="Model not loaded. Configure settings and click 'Load Model'.\nโš™๏ธ Auto-optimized: CPU threads & GPU layers auto-detected\n๐Ÿ“ Context size can be configured in Generation Settings",
                    interactive=False,
                    max_lines=5
                )
                
                # Generation parameters
                gr.HTML("<h3>โš™๏ธ Generation Settings</h3>")
                
                # Context size (now as a slider)
                context_size = gr.Slider(
                    minimum=512,
                    maximum=8192,
                    value=2048,
                    step=256,
                    label="Context Size",
                    info="Token context window (requires model reload)"
                )
                
                max_tokens = gr.Slider(
                    minimum=50,
                    maximum=2048,
                    value=512,
                    step=50,
                    label="Max Tokens",
                    info="Maximum response length"
                )
                temperature = gr.Slider(
                    minimum=0.1,
                    maximum=2.0,
                    value=0.7,
                    step=0.1,
                    label="Temperature",
                    info="Creativity (higher = more creative)"
                )
                top_p = gr.Slider(
                    minimum=0.1,
                    maximum=1.0,
                    value=0.9,
                    step=0.1,
                    label="Top-p",
                    info="Nucleus sampling"
                )
                repeat_penalty = gr.Slider(
                    minimum=1.0,
                    maximum=1.5,
                    value=1.1,
                    step=0.1,
                    label="Repeat Penalty",
                    info="Penalize repetition"
                )
                
                # Information section
                gr.HTML("""
                    <h3>โ„น๏ธ About</h3>
                    <p><strong>Format:</strong> GGUF (optimized)</p>
                    <p><strong>Backend:</strong> llama-cpp-python</p>
                    <p><strong>Features:</strong> CPU/GPU support, streaming</p>
                    <p><strong>Memory:</strong> Optimized usage</p>
                    <p><strong>Auto-Optimization:</strong> CPU threads & GPU layers detected automatically</p>
                    <p><strong>Sources:</strong> Hugging Face Hub or Local Files</p>
                """)
                
                if not LLAMA_CPP_AVAILABLE:
                    gr.HTML("""
                        <div style="background-color: #ffebee; padding: 10px; border-radius: 5px; margin-top: 10px;">
                            <p style="color: #c62828; margin: 0;"><strong>โš ๏ธ Missing Dependency</strong></p>
                            <p style="color: #c62828; margin: 0; font-size: 0.9em;">
                                Install llama-cpp-python:<br>
                                <code>pip install llama-cpp-python</code>
                            </p>
                        </div>
                    """)
        
        # Event handlers
        def toggle_source_visibility(source_type):
            if source_type == "Hugging Face":
                return gr.update(visible=True), gr.update(visible=False)
            else:
                return gr.update(visible=False), gr.update(visible=True)
        
        source_type.change(
            toggle_source_visibility,
            inputs=source_type,
            outputs=[hf_group, local_group]
        )
        
        load_btn.click(
            load_model_interface,
            inputs=[source_type, gguf_dropdown, repo_id, filename, context_size],
            outputs=model_status
        )
        
        submit_btn.click(
            chat_interface,
            inputs=[msg, chatbot, max_tokens, temperature, top_p, repeat_penalty],
            outputs=[chatbot, msg]
        )
        
        msg.submit(
            chat_interface,
            inputs=[msg, chatbot, max_tokens, temperature, top_p, repeat_penalty],
            outputs=[chatbot, msg]
        )
        
        clear_btn.click(
            clear_chat,
            outputs=[chatbot, msg]
        )
        
    return demo

if __name__ == "__main__":
    # Create and launch the interface
    demo = create_interface()
    
    # Launch with appropriate settings for Hugging Face Spaces
    demo.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=False,
        debug=False,
        show_error=True,
        quiet=False
    )