Spaces:
Sleeping
Sleeping
File size: 16,560 Bytes
401ee04 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 |
import gradio as gr
import os
import threading
import time
from pathlib import Path
from huggingface_hub import login
# Try to import llama-cpp-python, fallback to instructions if not available
try:
from llama_cpp import Llama
LLAMA_CPP_AVAILABLE = True
except ImportError:
LLAMA_CPP_AVAILABLE = False
print("llama-cpp-python not installed. Please install it with: pip install llama-cpp-python")
hf_token = os.environ.get("HF_TOKEN")
login(token = hf_token)
# Global variables for model
model = None
model_loaded = False
def find_gguf_file(directory="."):
"""Find GGUF files in the specified directory"""
gguf_files = []
for root, dirs, files in os.walk(directory):
for file in files:
if file.endswith('.gguf'):
gguf_files.append(os.path.join(root, file))
return gguf_files
def get_optimal_settings():
"""Get optimal CPU threads and GPU layers automatically"""
# Auto-detect CPU threads (use all available cores)
n_threads = os.cpu_count()
# Auto-detect GPU layers (try to use GPU if available)
n_gpu_layers = 0
try:
# Try to detect if CUDA is available
import subprocess
result = subprocess.run(['nvidia-smi'], capture_output=True, text=True)
if result.returncode == 0:
# NVIDIA GPU detected, use more layers
n_gpu_layers = 35 # Good default for Llama-3-8B
except:
# No GPU or CUDA not available
n_gpu_layers = 0
return n_threads, n_gpu_layers
def load_model_from_huggingface(repo_id, filename, n_ctx=2048):
"""Load the model from Hugging Face repository"""
global model, model_loaded
if not LLAMA_CPP_AVAILABLE:
return False, "llama-cpp-python not installed. Please install it with: pip install llama-cpp-python"
try:
print(f"Loading model from Hugging Face: {repo_id}/{filename}")
# Get optimal settings automatically
n_threads, n_gpu_layers = get_optimal_settings()
print(f"Auto-detected settings: {n_threads} CPU threads, {n_gpu_layers} GPU layers")
# Load model from Hugging Face with optimized settings
model = Llama.from_pretrained(
repo_id=repo_id,
filename=filename,
n_ctx=n_ctx, # Context window (configurable)
n_threads=n_threads, # CPU threads (auto-detected)
n_gpu_layers=n_gpu_layers, # Number of layers to offload to GPU (auto-detected)
verbose=False,
chat_format="chatml", # Use Llama-3 chat format
n_batch=512, # Batch size for prompt processing
use_mlock=True, # Keep model in memory
use_mmap=True, # Use memory mapping
)
model_loaded = True
print("Model loaded successfully!")
return True, f"โ
Model loaded successfully from {repo_id}/{filename}\n๐ Context: {n_ctx} tokens\n๐ฅ๏ธ CPU Threads: {n_threads}\n๐ฎ GPU Layers: {n_gpu_layers}"
except Exception as e:
model_loaded = False
error_msg = f"Error loading model: {str(e)}"
print(error_msg)
return False, f"โ {error_msg}"
def load_model_from_gguf(gguf_path=None, n_ctx=2048):
"""Load the model from a local GGUF file with automatic optimization"""
global model, model_loaded
if not LLAMA_CPP_AVAILABLE:
return False, "llama-cpp-python not installed. Please install it with: pip install llama-cpp-python"
try:
# If no path provided, try to find GGUF files
if gguf_path is None:
gguf_files = find_gguf_file()
if not gguf_files:
return False, "No GGUF files found in the repository"
gguf_path = gguf_files[0] # Use the first one found
print(f"Found GGUF file: {gguf_path}")
# Check if file exists
if not os.path.exists(gguf_path):
return False, f"GGUF file not found: {gguf_path}"
print(f"Loading model from: {gguf_path}")
# Get optimal settings automatically
n_threads, n_gpu_layers = get_optimal_settings()
print(f"Auto-detected settings: {n_threads} CPU threads, {n_gpu_layers} GPU layers")
# Load model with optimized settings
model = Llama(
model_path=gguf_path,
n_ctx=n_ctx, # Context window (configurable)
n_threads=n_threads, # CPU threads (auto-detected)
n_gpu_layers=n_gpu_layers, # Number of layers to offload to GPU (auto-detected)
verbose=False,
chat_format="llama-3", # Use Llama-3 chat format
n_batch=512, # Batch size for prompt processing
use_mlock=True, # Keep model in memory
use_mmap=True, # Use memory mapping
)
model_loaded = True
print("Model loaded successfully!")
return True, f"โ
Model loaded successfully from {os.path.basename(gguf_path)}\n๐ Context: {n_ctx} tokens\n๐ฅ๏ธ CPU Threads: {n_threads}\n๐ฎ GPU Layers: {n_gpu_layers}"
except Exception as e:
model_loaded = False
error_msg = f"Error loading model: {str(e)}"
print(error_msg)
return False, f"โ {error_msg}"
def generate_response_stream(message, history, max_tokens=512, temperature=0.7, top_p=0.9, repeat_penalty=1.1):
"""Generate response from the model with streaming"""
global model, model_loaded
if not model_loaded or model is None:
yield "Error: Model not loaded. Please load the model first."
return
try:
# Format the conversation history for Llama-3
conversation = []
# Add conversation history
for human, assistant in history:
conversation.append({"role": "user", "content": human})
if assistant: # Only add if assistant response exists
conversation.append({"role": "assistant", "content": assistant})
# Add current message
conversation.append({"role": "user", "content": message})
# Generate response with streaming
response = ""
stream = model.create_chat_completion(
messages=conversation,
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
repeat_penalty=repeat_penalty,
stream=True,
stop=["<|eot_id|>", "<|end_of_text|>"]
)
for chunk in stream:
if chunk['choices'][0]['delta'].get('content'):
new_text = chunk['choices'][0]['delta']['content']
response += new_text
yield response
except Exception as e:
yield f"Error generating response: {str(e)}"
def chat_interface(message, history, max_tokens, temperature, top_p, repeat_penalty):
"""Main chat interface function"""
if not message.strip():
return history, ""
if not model_loaded:
history.append((message, "Please load the model first using the 'Load Model' button."))
return history, ""
# Add user message to history
history = history + [(message, "")]
# Generate response
for response in generate_response_stream(message, history[:-1], max_tokens, temperature, top_p, repeat_penalty):
history[-1] = (message, response)
yield history, ""
def clear_chat():
"""Clear the chat history"""
return [], ""
def load_model_interface(source_type, gguf_path, repo_id, filename, context_size):
"""Interface function to load model with configurable context size"""
if source_type == "Hugging Face":
success, message = load_model_from_huggingface(repo_id, filename, n_ctx=int(context_size))
else: # Local file
success, message = load_model_from_gguf(gguf_path, n_ctx=int(context_size))
return message
def get_available_gguf_files():
"""Get list of available GGUF files"""
gguf_files = find_gguf_file()
if not gguf_files:
return ["No GGUF files found"]
return [os.path.basename(f) for f in gguf_files]
# Create the Gradio interface
def create_interface():
# Get available GGUF files
gguf_files = find_gguf_file()
gguf_choices = [os.path.basename(f) for f in gguf_files] if gguf_files else ["No GGUF files found"]
with gr.Blocks(title="Llama-3-8B GGUF Chatbot", theme=gr.themes.Soft()) as demo:
gr.HTML("""
<h1 style="text-align: center; color: #2E86AB; margin-bottom: 30px;">
๐ฆ MMed-Llama-Alpaca GGUF Chatbot
</h1>
<p style="text-align: center; color: #666; margin-bottom: 30px;">
Chat with the MMed-Llama-Alpaca model (Q4_K_M quantized) for medical assistance!
</p>
""")
with gr.Row():
with gr.Column(scale=4):
# Chat interface
chatbot = gr.Chatbot(
height=500,
show_copy_button=True,
bubble_full_width=False,
show_label=False,
placeholder="Model not loaded. Please load the model first to start chatting."
)
with gr.Row():
msg = gr.Textbox(
placeholder="Type your message here...",
container=False,
scale=7,
show_label=False
)
submit_btn = gr.Button("Send", variant="primary", scale=1)
clear_btn = gr.Button("Clear", variant="secondary", scale=1)
with gr.Column(scale=1):
# Model loading section
gr.HTML("<h3>๐ง Model Control</h3>")
# Model source selection
source_type = gr.Radio(
choices=["Hugging Face", "Local File"],
value="Hugging Face",
label="Model Source",
info="Choose where to load the model from"
)
# Hugging Face settings
with gr.Group(visible=True) as hf_group:
gr.HTML("<h4>๐ค Hugging Face Settings</h4>")
repo_id = gr.Textbox(
value="Axcel1/MMed-llama-alpaca-Q4_K_M-GGUF",
label="Repository ID",
info="e.g., username/repo-name"
)
filename = gr.Textbox(
value="mmed-llama-alpaca-q4_k_m.gguf",
label="Filename",
info="GGUF filename in the repository"
)
# Local file settings
with gr.Group(visible=False) as local_group:
gr.HTML("<h4>๐ Local File Settings</h4>")
if gguf_files:
gguf_dropdown = gr.Dropdown(
choices=gguf_choices,
value=gguf_choices[0] if gguf_choices[0] != "No GGUF files found" else None,
label="Select GGUF File",
info="Choose which GGUF file to load"
)
else:
gguf_dropdown = gr.Textbox(
value="No GGUF files found in repository",
label="GGUF File",
interactive=False
)
load_btn = gr.Button("Load Model", variant="primary", size="lg")
model_status = gr.Textbox(
label="Status",
value="Model not loaded. Configure settings and click 'Load Model'.\nโ๏ธ Auto-optimized: CPU threads & GPU layers auto-detected\n๐ Context size can be configured in Generation Settings",
interactive=False,
max_lines=5
)
# Generation parameters
gr.HTML("<h3>โ๏ธ Generation Settings</h3>")
# Context size (now as a slider)
context_size = gr.Slider(
minimum=512,
maximum=8192,
value=2048,
step=256,
label="Context Size",
info="Token context window (requires model reload)"
)
max_tokens = gr.Slider(
minimum=50,
maximum=2048,
value=512,
step=50,
label="Max Tokens",
info="Maximum response length"
)
temperature = gr.Slider(
minimum=0.1,
maximum=2.0,
value=0.7,
step=0.1,
label="Temperature",
info="Creativity (higher = more creative)"
)
top_p = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.9,
step=0.1,
label="Top-p",
info="Nucleus sampling"
)
repeat_penalty = gr.Slider(
minimum=1.0,
maximum=1.5,
value=1.1,
step=0.1,
label="Repeat Penalty",
info="Penalize repetition"
)
# Information section
gr.HTML("""
<h3>โน๏ธ About</h3>
<p><strong>Format:</strong> GGUF (optimized)</p>
<p><strong>Backend:</strong> llama-cpp-python</p>
<p><strong>Features:</strong> CPU/GPU support, streaming</p>
<p><strong>Memory:</strong> Optimized usage</p>
<p><strong>Auto-Optimization:</strong> CPU threads & GPU layers detected automatically</p>
<p><strong>Sources:</strong> Hugging Face Hub or Local Files</p>
""")
if not LLAMA_CPP_AVAILABLE:
gr.HTML("""
<div style="background-color: #ffebee; padding: 10px; border-radius: 5px; margin-top: 10px;">
<p style="color: #c62828; margin: 0;"><strong>โ ๏ธ Missing Dependency</strong></p>
<p style="color: #c62828; margin: 0; font-size: 0.9em;">
Install llama-cpp-python:<br>
<code>pip install llama-cpp-python</code>
</p>
</div>
""")
# Event handlers
def toggle_source_visibility(source_type):
if source_type == "Hugging Face":
return gr.update(visible=True), gr.update(visible=False)
else:
return gr.update(visible=False), gr.update(visible=True)
source_type.change(
toggle_source_visibility,
inputs=source_type,
outputs=[hf_group, local_group]
)
load_btn.click(
load_model_interface,
inputs=[source_type, gguf_dropdown, repo_id, filename, context_size],
outputs=model_status
)
submit_btn.click(
chat_interface,
inputs=[msg, chatbot, max_tokens, temperature, top_p, repeat_penalty],
outputs=[chatbot, msg]
)
msg.submit(
chat_interface,
inputs=[msg, chatbot, max_tokens, temperature, top_p, repeat_penalty],
outputs=[chatbot, msg]
)
clear_btn.click(
clear_chat,
outputs=[chatbot, msg]
)
return demo
if __name__ == "__main__":
# Create and launch the interface
demo = create_interface()
# Launch with appropriate settings for Hugging Face Spaces
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
debug=False,
show_error=True,
quiet=False
) |