Spaces:
Runtime error
Runtime error
import os | |
import torch | |
from diffusers import FluxPipeline # type: ignore | |
import gradio as gr # type: ignore | |
from huggingface_hub import login | |
pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16) | |
pipe.enable_model_cpu_offload() #save some VRAM by offloading the model to CPU. Remove this if you have enough GPU power | |
token = os.getenv("HF_TOKEN") | |
login(token=token) | |
prompt = "A cat holding a sign that says hello world" | |
image = pipe( | |
prompt, | |
height=1024, | |
width=1024, | |
guidance_scale=3.5, | |
num_inference_steps=50, | |
max_sequence_length=512, | |
generator=torch.Generator("cpu").manual_seed(0) | |
).images[0] | |
image.save("flux-dev.png") | |
gradio_app = gr.Interface( | |
image, | |
inputs=gr.Image(label="Select hot dog candidate", sources=['upload', 'webcam'], type="pil"), | |
outputs=[gr.Image(label="Processed Image"), gr.Label(label="Result", num_top_classes=2)], | |
title="Hot Dog? Or Not?", | |
) | |
if __name__ == "__main__": | |
gradio_app.launch() |