Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# app.py
|
2 |
+
|
3 |
+
import gradio as gr
|
4 |
+
from PIL import Image
|
5 |
+
from transformers import VisionEncoderDecoderModel, TrOCRProcessor
|
6 |
+
import torch
|
7 |
+
|
8 |
+
print("--- Initializing Solver Service ---")
|
9 |
+
|
10 |
+
# Use a GPU if available (Hugging Face may provide one)
|
11 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
12 |
+
|
13 |
+
# --- LOAD MODELS ONLY ONCE AT STARTUP ---
|
14 |
+
print("1. Loading TrOCR processor...")
|
15 |
+
processor = TrOCRProcessor.from_pretrained("anuashok/ocr-captcha-v3", use_fast=True)
|
16 |
+
print(" - Processor loaded.")
|
17 |
+
|
18 |
+
print("2. Loading VisionEncoderDecoder model...")
|
19 |
+
model = VisionEncoderDecoderModel.from_pretrained("anuashok/ocr-captcha-v3").to(device)
|
20 |
+
print(" - Model loaded.")
|
21 |
+
print(f"--- Model is running on: {device.upper()} ---")
|
22 |
+
# --- END OF HEAVY LOADING ---
|
23 |
+
|
24 |
+
|
25 |
+
def solve_captcha(input_image: Image.Image) -> str:
|
26 |
+
"""
|
27 |
+
Solves a CAPTCHA using the pre-loaded model.
|
28 |
+
This function uses the exact image processing logic from your original script.
|
29 |
+
"""
|
30 |
+
print("--- Received image for solving ---")
|
31 |
+
|
32 |
+
# 1. Convert input image to RGBA (as in your original code)
|
33 |
+
image = input_image.convert("RGBA")
|
34 |
+
|
35 |
+
# 2. Prepare a white background
|
36 |
+
background = Image.new("RGBA", image.size, (255, 255, 255))
|
37 |
+
|
38 |
+
# 3. Composite the image onto the white background and convert to RGB
|
39 |
+
combined = Image.alpha_composite(background, image).convert("RGB")
|
40 |
+
print(" - Image pre-processing complete.")
|
41 |
+
|
42 |
+
# 4. Prepare image for the model
|
43 |
+
pixel_values = processor(images=combined, return_tensors="pt").pixel_values.to(device)
|
44 |
+
print(" - Image prepared for model.")
|
45 |
+
|
46 |
+
# 5. Run model inference
|
47 |
+
generated_ids = model.generate(pixel_values)
|
48 |
+
print(" - Model inference complete.")
|
49 |
+
|
50 |
+
# 6. Decode the result
|
51 |
+
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
52 |
+
print(f" - Decoding complete. Result: {generated_text}")
|
53 |
+
|
54 |
+
return generated_text
|
55 |
+
|
56 |
+
|
57 |
+
# --- Create the Gradio Interface and API Endpoint ---
|
58 |
+
gr.Interface(
|
59 |
+
fn=solve_captcha,
|
60 |
+
inputs=gr.Image(type="pil", label="Upload CAPTCHA Image"),
|
61 |
+
outputs=gr.Textbox(label="Result"),
|
62 |
+
title="TrOCR CAPTCHA Solver (Custom Logic)",
|
63 |
+
description="An API for the anuashok/ocr-captcha-v3 model using specific pre-processing."
|
64 |
+
).launch()
|