#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Data-Viewer tab ---- 美化·修正版
"""
import gradio as gr
import pandas as pd
import json, random
from pathlib import Path
import re # 导入re模块
# ---------- 路径 ----------
BASE_DIR = Path(__file__).resolve().parent.parent
DATA_VIEWER_FILE = BASE_DIR / "data" / "data_viewer.jsonl"
# ---------- 工具 ----------
def load_data_viewer_data() -> pd.DataFrame:
records = []
if DATA_VIEWER_FILE.exists():
for line in DATA_VIEWER_FILE.read_text(encoding="utf-8").splitlines():
try:
records.append(json.loads(line))
except json.JSONDecodeError:
continue
df = pd.DataFrame(records)
req = ["model_name", "id", "prompt", "article", "overall_score",
"comprehensiveness_score", "insight_score",
"instruction_following_score", "readability_score"]
if df.empty or not all(c in df.columns for c in req):
# 如果缺少任何必要列,返回一个包含所有期望列的空DataFrame,以避免后续错误
return pd.DataFrame(columns=req)
df["id"] = df["id"].astype(str)
return df
def make_user_task_markdown(item_id, prompt):
return f"""### User Task 🎯
**Task ID:** {item_id}
**Description:** {prompt}"""
def make_article_markdown(article: str) -> str:
if article and isinstance(article, str):
# 首先,标准化已经存在的多个换行符
processed_article = re.sub(r'\n{2,}', '\n\n', article)
# 保护表格区域
table_pattern = r'(\|[^\n]*\n(?:[\|\s\-:]+\n)?(?:\|[^\n]*\n)*)'
tables = []
def replace_table(match):
tables.append(match.group(1))
return f'__TABLE_PLACEHOLDER_{len(tables)-1}__'
processed_article = re.sub(table_pattern, replace_table, processed_article)
# 处理列表格式:识别 * ** 模式并确保前面有换行
# 匹配模式:* **标题:** 内容
processed_article = re.sub(r'(?
{title}
{score_value}
"""
# Outer container styled to mimic the .card class from the main CSS block
return f"""
"""
# ---------- 生成 Tab ----------
def create_data_viewer_tab():
with gr.Tab("🔍Data Viewer"):
gr.HTML(
"""
"""
)
df = load_data_viewer_data()
if df.empty:
gr.Markdown("## ⚠️ 没有可用数据 \n请确认 `data/data_viewer.jsonl` 存在且字段齐全(包括所有分数)。")
return
models = sorted(df["model_name"].unique())
tasks_df = (
df[["id", "prompt"]].drop_duplicates()
.assign(id_num=lambda x: x["id"].astype(int))
.sort_values("id_num")
)
task_choices = []
for _, row in tasks_df.iterrows():
limit = 30 if int(row["id"]) <= 50 else 60
preview = row["prompt"][:limit] + ("…" if len(row["prompt"]) > limit else "")
task_choices.append(f"{row['id']}. {preview}")
init_model = random.choice(models) if models else None
init_task = random.choice(task_choices) if task_choices else None
with gr.Row():
model_dd = gr.Dropdown(label="Select Model", choices=models, value=init_model, interactive=True)
task_dd = gr.Dropdown(label="Select Task", choices=task_choices, value=init_task, interactive=True)
user_md = gr.Markdown(elem_classes=["card", "scrollable-sm"])
article_md = gr.Markdown(elem_classes=["card", "scrollable-lg"])
scores_html = gr.HTML() # 新增HTML组件用于显示分数
def fetch(model, task_disp):
if not model or not task_disp:
msg = "请选择模型和任务。"
return make_user_task_markdown("--", msg), make_article_markdown(msg), ""
item_id = task_disp.split(".", 1)[0].strip()
entry = df[(df["model_name"] == model) & (df["id"] == item_id)]
if entry.empty:
err = f"未找到模型 **{model}** 对应任务 **{item_id}** 的内容或分数。"
return make_user_task_markdown(item_id, err), make_article_markdown(err), ""
prompt = entry["prompt"].iloc[0]
article = entry["article"].iloc[0]
# 提取分数
overall = entry["overall_score"].iloc[0]
comprehensiveness = entry["comprehensiveness_score"].iloc[0]
insight = entry["insight_score"].iloc[0]
instruction = entry["instruction_following_score"].iloc[0]
readability = entry["readability_score"].iloc[0]
scores_content = make_scores_html(overall, comprehensiveness, insight, instruction, readability)
return make_user_task_markdown(item_id, prompt), make_article_markdown(article), scores_content
# 初始渲染
if init_model and init_task:
user_md.value, article_md.value, scores_html.value = fetch(init_model, init_task)
else:
user_md.value = make_user_task_markdown("--", "请选择模型和任务。")
article_md.value = make_article_markdown("请选择模型和任务。")
scores_html.value = ""
model_dd.change(fetch, inputs=[model_dd, task_dd], outputs=[user_md, article_md, scores_html])
task_dd.change(fetch, inputs=[model_dd, task_dd], outputs=[user_md, article_md, scores_html])