Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- app.py +728 -0
- requirements.txt +3 -0
app.py
ADDED
@@ -0,0 +1,728 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import requests
|
4 |
+
import io
|
5 |
+
import uuid
|
6 |
+
import os
|
7 |
+
import json
|
8 |
+
import base64
|
9 |
+
from datetime import datetime
|
10 |
+
import re
|
11 |
+
import time
|
12 |
+
|
13 |
+
# Set page configuration
|
14 |
+
st.set_page_config(
|
15 |
+
page_title="Speech Hate Detection - Annotation Tool",
|
16 |
+
page_icon="🎧",
|
17 |
+
layout="centered",
|
18 |
+
initial_sidebar_state="collapsed"
|
19 |
+
)
|
20 |
+
|
21 |
+
# Constants
|
22 |
+
HF_DATASET_URL = "https://huggingface.co/datasets/kcrl/Hs/resolve/main/"
|
23 |
+
RESULTS_FILE = "annotation_results.csv" # Local CSV file to store results
|
24 |
+
|
25 |
+
# Debug flag - enable to see detailed debug info
|
26 |
+
DEBUG_MODE = True
|
27 |
+
|
28 |
+
# Log debugging information if debug mode is enabled
|
29 |
+
def debug_log(message):
|
30 |
+
if DEBUG_MODE:
|
31 |
+
st.write(f"DEBUG: {message}")
|
32 |
+
|
33 |
+
# Initial debug message
|
34 |
+
debug_log("Application starting...")
|
35 |
+
|
36 |
+
# For Hugging Face Spaces deployment
|
37 |
+
if os.path.exists('/data'):
|
38 |
+
# Use the persistent storage directory
|
39 |
+
RESULTS_FILE = "/data/annotation_results.csv"
|
40 |
+
debug_log(f"Using persistent storage at {RESULTS_FILE}")
|
41 |
+
|
42 |
+
# Function to check if file exists in the Hugging Face repository with exponential backoff
|
43 |
+
def check_file_exists(file_url, max_retries=3):
|
44 |
+
"""
|
45 |
+
Checks if a file exists at the given URL without downloading the entire file.
|
46 |
+
Uses exponential backoff for retries.
|
47 |
+
Returns True if the file exists, False otherwise.
|
48 |
+
"""
|
49 |
+
for attempt in range(max_retries):
|
50 |
+
try:
|
51 |
+
# Use a short timeout to avoid long waits
|
52 |
+
response = requests.head(file_url, timeout=3)
|
53 |
+
return response.status_code == 200
|
54 |
+
except Exception as e:
|
55 |
+
if attempt < max_retries - 1:
|
56 |
+
# Exponential backoff: 1s, 2s, 4s, etc.
|
57 |
+
wait_time = 2 ** attempt
|
58 |
+
debug_log(f"Request failed, retrying in {wait_time}s: {str(e)}")
|
59 |
+
time.sleep(wait_time)
|
60 |
+
else:
|
61 |
+
debug_log(f"Request failed after {max_retries} attempts: {str(e)}")
|
62 |
+
return False
|
63 |
+
return False
|
64 |
+
|
65 |
+
# Function to check if a specific chunk exists
|
66 |
+
def check_chunk_exists(video_id, chunk_num):
|
67 |
+
"""Check if a specific chunk of a video exists in the repository"""
|
68 |
+
chunk_id = f"{chunk_num:04d}"
|
69 |
+
file_name = f"{video_id}_chunk_{chunk_id}.wav"
|
70 |
+
file_url = f"{HF_DATASET_URL}{file_name}"
|
71 |
+
|
72 |
+
return check_file_exists(file_url)
|
73 |
+
|
74 |
+
# Function to find all chunks for a video by using binary search approach
|
75 |
+
def find_all_chunks_for_video(video_id, max_possible_chunks=500):
|
76 |
+
"""
|
77 |
+
Find all available chunks for a video ID using an optimized approach.
|
78 |
+
Uses binary search first to find the approximate range, then checks each file.
|
79 |
+
|
80 |
+
Args:
|
81 |
+
video_id: The video ID to check
|
82 |
+
max_possible_chunks: Upper limit for the binary search
|
83 |
+
|
84 |
+
Returns:
|
85 |
+
List of chunk numbers that exist
|
86 |
+
"""
|
87 |
+
debug_log(f"Finding chunks for {video_id}...")
|
88 |
+
|
89 |
+
# First use binary search to find the upper bound
|
90 |
+
low = 1
|
91 |
+
high = max_possible_chunks
|
92 |
+
|
93 |
+
# Find an upper bound first (where files no longer exist)
|
94 |
+
while low <= high:
|
95 |
+
mid = (low + high) // 2
|
96 |
+
if check_chunk_exists(video_id, mid):
|
97 |
+
low = mid + 1
|
98 |
+
else:
|
99 |
+
high = mid - 1
|
100 |
+
|
101 |
+
# The highest existing chunk is at 'high'
|
102 |
+
highest_chunk = max(1, high)
|
103 |
+
debug_log(f"Binary search found highest chunk: {highest_chunk}")
|
104 |
+
|
105 |
+
# Now check each potential chunk from 1 to highest_chunk
|
106 |
+
existing_chunks = []
|
107 |
+
for chunk_num in range(1, highest_chunk + 1):
|
108 |
+
# Add some throttling to avoid rate limits (0.1s between requests)
|
109 |
+
time.sleep(0.1)
|
110 |
+
if check_chunk_exists(video_id, chunk_num):
|
111 |
+
existing_chunks.append(chunk_num)
|
112 |
+
|
113 |
+
debug_log(f"Found {len(existing_chunks)} chunks for {video_id}")
|
114 |
+
return existing_chunks
|
115 |
+
|
116 |
+
# Function to build a list of audio file paths from video IDs with dynamic chunk detection
|
117 |
+
def build_file_list_from_video_ids(video_ids, check_existence=False):
|
118 |
+
"""
|
119 |
+
Creates a list of audio files based on the provided video IDs.
|
120 |
+
Dynamically detects how many chunks exist for each video.
|
121 |
+
|
122 |
+
Args:
|
123 |
+
video_ids: List of video IDs
|
124 |
+
check_existence: Whether to verify each file exists before adding it
|
125 |
+
|
126 |
+
Returns:
|
127 |
+
List of dictionaries with file info
|
128 |
+
"""
|
129 |
+
files = []
|
130 |
+
debug_log(f"Building file list for {len(video_ids)} videos (check_existence={check_existence})...")
|
131 |
+
|
132 |
+
# Create progress bar for checking videos
|
133 |
+
progress_bar = st.progress(0)
|
134 |
+
|
135 |
+
for i, video_id in enumerate(video_ids):
|
136 |
+
# Update progress
|
137 |
+
progress_bar.progress((i + 1) / len(video_ids))
|
138 |
+
|
139 |
+
if check_existence:
|
140 |
+
# Find all chunks for this video
|
141 |
+
st.write(f"Finding chunks for video {video_id} ({i+1}/{len(video_ids)})...")
|
142 |
+
chunks = find_all_chunks_for_video(video_id)
|
143 |
+
|
144 |
+
if chunks:
|
145 |
+
st.write(f"Found {len(chunks)} chunks for video {video_id}")
|
146 |
+
for chunk_num in chunks:
|
147 |
+
chunk_id = f"{chunk_num:04d}"
|
148 |
+
file_id = f"{video_id}_chunk_{chunk_id}"
|
149 |
+
file_name = f"{file_id}.wav"
|
150 |
+
file_url = f"{HF_DATASET_URL}{file_name}"
|
151 |
+
|
152 |
+
files.append({
|
153 |
+
"id": file_id,
|
154 |
+
"name": file_name,
|
155 |
+
"url": file_url,
|
156 |
+
"video_id": video_id,
|
157 |
+
"chunk_num": chunk_num
|
158 |
+
})
|
159 |
+
else:
|
160 |
+
st.warning(f"No chunks found for video {video_id}")
|
161 |
+
else:
|
162 |
+
# If not checking existence, use a default range of chunks (1-100)
|
163 |
+
# Reduced from 1-200 to speed up initial loading
|
164 |
+
for chunk_num in range(1, 101):
|
165 |
+
chunk_id = f"{chunk_num:04d}"
|
166 |
+
file_id = f"{video_id}_chunk_{chunk_id}"
|
167 |
+
file_name = f"{file_id}.wav"
|
168 |
+
file_url = f"{HF_DATASET_URL}{file_name}"
|
169 |
+
|
170 |
+
files.append({
|
171 |
+
"id": file_id,
|
172 |
+
"name": file_name,
|
173 |
+
"url": file_url,
|
174 |
+
"video_id": video_id,
|
175 |
+
"chunk_num": chunk_num
|
176 |
+
})
|
177 |
+
|
178 |
+
debug_log(f"Built file list with {len(files)} total files")
|
179 |
+
return files
|
180 |
+
|
181 |
+
# Function to download file from Hugging Face with retry logic
|
182 |
+
def download_file_from_hf(file_url, max_retries=3):
|
183 |
+
for attempt in range(max_retries):
|
184 |
+
try:
|
185 |
+
response = requests.get(file_url, timeout=10) # Increased timeout for audio downloads
|
186 |
+
if response.status_code == 200:
|
187 |
+
return response.content
|
188 |
+
else:
|
189 |
+
if attempt < max_retries - 1:
|
190 |
+
wait_time = 2 ** attempt
|
191 |
+
debug_log(f"Download failed (HTTP {response.status_code}), retrying in {wait_time}s")
|
192 |
+
time.sleep(wait_time)
|
193 |
+
else:
|
194 |
+
st.error(f"Failed to download file: HTTP {response.status_code}")
|
195 |
+
return None
|
196 |
+
except Exception as e:
|
197 |
+
if attempt < max_retries - 1:
|
198 |
+
wait_time = 2 ** attempt
|
199 |
+
debug_log(f"Download error, retrying in {wait_time}s: {str(e)}")
|
200 |
+
time.sleep(wait_time)
|
201 |
+
else:
|
202 |
+
st.error(f"Error downloading file: {e}")
|
203 |
+
return None
|
204 |
+
return None
|
205 |
+
|
206 |
+
# Create a unique ID for new annotators or retrieve existing
|
207 |
+
def get_annotator_id():
|
208 |
+
debug_log("Getting annotator ID...")
|
209 |
+
if 'annotator_id' not in st.session_state:
|
210 |
+
# Check if we have a stored ID in local storage
|
211 |
+
annotator_id_file = '.annotator_id'
|
212 |
+
if os.path.exists('/data'):
|
213 |
+
annotator_id_file = '/data/.annotator_id'
|
214 |
+
|
215 |
+
if os.path.exists(annotator_id_file):
|
216 |
+
with open(annotator_id_file, 'r') as f:
|
217 |
+
st.session_state.annotator_id = f.read().strip()
|
218 |
+
debug_log(f"Retrieved existing annotator ID")
|
219 |
+
else:
|
220 |
+
# Generate a new ID
|
221 |
+
st.session_state.annotator_id = str(uuid.uuid4())
|
222 |
+
with open(annotator_id_file, 'w') as f:
|
223 |
+
f.write(st.session_state.annotator_id)
|
224 |
+
debug_log(f"Created new annotator ID")
|
225 |
+
return st.session_state.annotator_id
|
226 |
+
|
227 |
+
# Function to load annotation data from CSV
|
228 |
+
def load_annotations():
|
229 |
+
debug_log(f"Loading annotations from {RESULTS_FILE}")
|
230 |
+
try:
|
231 |
+
if os.path.exists(RESULTS_FILE):
|
232 |
+
df = pd.read_csv(RESULTS_FILE)
|
233 |
+
debug_log(f"Loaded {len(df)} annotation records")
|
234 |
+
return df
|
235 |
+
else:
|
236 |
+
# Create a new DataFrame if the file doesn't exist
|
237 |
+
debug_log("No existing annotations found, creating new file")
|
238 |
+
df = pd.DataFrame(columns=['file_id', 'file_name', 'Label', 'annotator_id', 'timestamp', 'video_id'])
|
239 |
+
df.to_csv(RESULTS_FILE, index=False)
|
240 |
+
return df
|
241 |
+
except Exception as e:
|
242 |
+
st.error(f"Error loading annotations: {e}")
|
243 |
+
debug_log(f"Error loading annotations: {str(e)}")
|
244 |
+
return pd.DataFrame(columns=['file_id', 'file_name', 'Label', 'annotator_id', 'timestamp', 'video_id'])
|
245 |
+
|
246 |
+
# Function to save annotations to CSV
|
247 |
+
def save_annotation(df):
|
248 |
+
debug_log(f"Saving annotations to {RESULTS_FILE}")
|
249 |
+
try:
|
250 |
+
df.to_csv(RESULTS_FILE, index=False)
|
251 |
+
debug_log("Annotations saved successfully")
|
252 |
+
return True
|
253 |
+
except Exception as e:
|
254 |
+
st.error(f"Error saving annotation: {e}")
|
255 |
+
debug_log(f"Error saving annotations: {str(e)}")
|
256 |
+
return False
|
257 |
+
|
258 |
+
# Initialize application state
|
259 |
+
if 'initialized' not in st.session_state:
|
260 |
+
debug_log("Initializing application state")
|
261 |
+
st.session_state.initialized = False
|
262 |
+
st.session_state.current_file_index = 0
|
263 |
+
st.session_state.current_file = None
|
264 |
+
st.session_state.annotation_df = None
|
265 |
+
st.session_state.all_files = []
|
266 |
+
st.session_state.pending_files = []
|
267 |
+
st.session_state.hate_count = 0
|
268 |
+
st.session_state.non_hate_count = 0
|
269 |
+
st.session_state.discard_count = 0
|
270 |
+
st.session_state.page = 1
|
271 |
+
st.session_state.files_per_page = 50
|
272 |
+
st.session_state.lite_mode = False
|
273 |
+
|
274 |
+
# Application title and header
|
275 |
+
st.markdown("""
|
276 |
+
<style>
|
277 |
+
.main-header {
|
278 |
+
font-size: 26px;
|
279 |
+
font-weight: bold;
|
280 |
+
color: #ff4b4b;
|
281 |
+
margin-bottom: 20px;
|
282 |
+
}
|
283 |
+
.sub-header {
|
284 |
+
font-size: 18px;
|
285 |
+
color: #555;
|
286 |
+
margin-bottom: 30px;
|
287 |
+
}
|
288 |
+
.progress-container {
|
289 |
+
margin: 20px 0;
|
290 |
+
padding: 15px;
|
291 |
+
background-color: #f9f9f9;
|
292 |
+
border-radius: 5px;
|
293 |
+
}
|
294 |
+
.stats-container {
|
295 |
+
display: flex;
|
296 |
+
justify-content: space-around;
|
297 |
+
margin-top: 20px;
|
298 |
+
text-align: center;
|
299 |
+
flex-wrap: wrap;
|
300 |
+
}
|
301 |
+
.stat-item {
|
302 |
+
padding: 10px;
|
303 |
+
min-width: 100px;
|
304 |
+
}
|
305 |
+
.stat-value {
|
306 |
+
font-size: 24px;
|
307 |
+
font-weight: bold;
|
308 |
+
color: #4CAF50;
|
309 |
+
}
|
310 |
+
.stat-label {
|
311 |
+
font-size: 14px;
|
312 |
+
color: #666;
|
313 |
+
}
|
314 |
+
.audio-container {
|
315 |
+
margin: 30px 0;
|
316 |
+
padding: 20px;
|
317 |
+
background-color: #f5f5f5;
|
318 |
+
border-radius: 10px;
|
319 |
+
text-align: center;
|
320 |
+
}
|
321 |
+
.file-info {
|
322 |
+
font-size: 14px;
|
323 |
+
color: #666;
|
324 |
+
margin-top: 5px;
|
325 |
+
}
|
326 |
+
</style>
|
327 |
+
|
328 |
+
<div class="main-header">Speech Hate Detection - Annotation Tool</div>
|
329 |
+
""", unsafe_allow_html=True)
|
330 |
+
|
331 |
+
# Quick start in lite mode (new feature)
|
332 |
+
if not st.session_state.initialized:
|
333 |
+
if st.button("⚡ Quick Start (Lite Mode)"):
|
334 |
+
debug_log("Starting in lite mode")
|
335 |
+
st.session_state.lite_mode = True
|
336 |
+
st.session_state.annotation_df = load_annotations()
|
337 |
+
st.session_state.initialized = True
|
338 |
+
st.success("Started in lite mode. Enter video IDs and click Initialize.")
|
339 |
+
st.rerun()
|
340 |
+
|
341 |
+
# App configuration section (collapsible)
|
342 |
+
with st.expander("Configuration", expanded=not st.session_state.initialized):
|
343 |
+
st.markdown("""
|
344 |
+
### Configuration
|
345 |
+
|
346 |
+
This tool loads audio files from the Hugging Face dataset at:
|
347 |
+
https://huggingface.co/datasets/kcrl/Hs
|
348 |
+
|
349 |
+
You can provide a list of video IDs for annotation by adding them in the text area below.
|
350 |
+
""")
|
351 |
+
|
352 |
+
# Default video IDs
|
353 |
+
default_video_ids = "0hJ2JGhM7TY\n1PRABBSTpiE\n4ewRgBMP_AY" # Reduced to just 3 for initial testing
|
354 |
+
|
355 |
+
# Allow user to input video IDs
|
356 |
+
user_video_ids = st.text_area(
|
357 |
+
"Video IDs to annotate (one per line)",
|
358 |
+
value=default_video_ids,
|
359 |
+
height=150,
|
360 |
+
help="Enter the YouTube video IDs, one per line. The app will look for chunks of these videos."
|
361 |
+
)
|
362 |
+
|
363 |
+
annotator_name = st.text_input("Your Name (Optional)",
|
364 |
+
help="Your name for tracking purposes")
|
365 |
+
|
366 |
+
# Set default to False to speed initial loading
|
367 |
+
check_files = st.checkbox("Check if files exist (slower but more accurate)", value=False,
|
368 |
+
help="Verifies each file exists before adding it to the list")
|
369 |
+
|
370 |
+
only_new_files = st.checkbox("Only show new files (not previously annotated)", value=True,
|
371 |
+
help="Skip files that have already been annotated")
|
372 |
+
|
373 |
+
col1, col2 = st.columns(2)
|
374 |
+
with col1:
|
375 |
+
if st.button("Initialize Application"):
|
376 |
+
debug_log("Initialize button clicked")
|
377 |
+
# Get annotator ID
|
378 |
+
annotator_id = get_annotator_id()
|
379 |
+
|
380 |
+
# First check if we have any video IDs
|
381 |
+
if not user_video_ids.strip():
|
382 |
+
st.error("Please enter at least one video ID to annotate")
|
383 |
+
else:
|
384 |
+
# Split by line and remove empty lines
|
385 |
+
video_ids = [vid.strip() for vid in user_video_ids.split('\n') if vid.strip()]
|
386 |
+
|
387 |
+
if not video_ids:
|
388 |
+
st.error("Please enter at least one valid video ID")
|
389 |
+
else:
|
390 |
+
# Load all audio files based on the video IDs
|
391 |
+
with st.spinner(f"Building file list for {len(video_ids)} videos..."):
|
392 |
+
all_files = build_file_list_from_video_ids(
|
393 |
+
video_ids,
|
394 |
+
check_existence=check_files
|
395 |
+
)
|
396 |
+
|
397 |
+
if not all_files:
|
398 |
+
st.error("No audio files found. Please check the video IDs and try again.")
|
399 |
+
else:
|
400 |
+
st.session_state.all_files = all_files
|
401 |
+
|
402 |
+
# Load existing annotation CSV
|
403 |
+
annotation_df = load_annotations()
|
404 |
+
st.session_state.annotation_df = annotation_df
|
405 |
+
|
406 |
+
# Filter out files that have already been annotated by this annotator
|
407 |
+
annotated_files = set()
|
408 |
+
if not annotation_df.empty:
|
409 |
+
if only_new_files:
|
410 |
+
# If only showing new files, consider files annotated by any annotator
|
411 |
+
annotated_files = set(annotation_df['file_id'].tolist())
|
412 |
+
else:
|
413 |
+
# Otherwise, only consider files annotated by this specific annotator
|
414 |
+
annotated_files = set(annotation_df[annotation_df['annotator_id'] == annotator_id]['file_id'].tolist())
|
415 |
+
|
416 |
+
# Count existing annotations by this annotator
|
417 |
+
hate_count = len(annotation_df[(annotation_df['annotator_id'] == annotator_id) &
|
418 |
+
(annotation_df['Label'] == 'Hate')])
|
419 |
+
non_hate_count = len(annotation_df[(annotation_df['annotator_id'] == annotator_id) &
|
420 |
+
(annotation_df['Label'] == 'Non-Hate')])
|
421 |
+
discard_count = len(annotation_df[(annotation_df['annotator_id'] == annotator_id) &
|
422 |
+
(annotation_df['Label'] == 'Discard')])
|
423 |
+
|
424 |
+
st.session_state.hate_count = hate_count
|
425 |
+
st.session_state.non_hate_count = non_hate_count
|
426 |
+
st.session_state.discard_count = discard_count
|
427 |
+
|
428 |
+
# Create list of pending files (not yet annotated)
|
429 |
+
pending_files = [f for f in all_files if f['id'] not in annotated_files]
|
430 |
+
st.session_state.pending_files = pending_files
|
431 |
+
|
432 |
+
if pending_files:
|
433 |
+
st.session_state.current_file = pending_files[0]
|
434 |
+
st.session_state.initialized = True
|
435 |
+
st.success(f"Application initialized successfully! Found {len(pending_files)} files to annotate.")
|
436 |
+
st.rerun()
|
437 |
+
else:
|
438 |
+
st.warning("All files have already been annotated. Try adding new video IDs or uncheck 'Only show new files'.")
|
439 |
+
|
440 |
+
with col2:
|
441 |
+
if st.button("Reset Application State"):
|
442 |
+
# Clear the session state
|
443 |
+
for key in list(st.session_state.keys()):
|
444 |
+
del st.session_state[key]
|
445 |
+
st.success("Application state has been reset. You can start fresh.")
|
446 |
+
st.rerun()
|
447 |
+
|
448 |
+
# Main annotation interface
|
449 |
+
if st.session_state.initialized and st.session_state.pending_files:
|
450 |
+
debug_log("Rendering main annotation interface")
|
451 |
+
# Display current annotator
|
452 |
+
st.markdown(f"""
|
453 |
+
<div class="sub-header">
|
454 |
+
Annotator: {annotator_name if annotator_name else st.session_state.annotator_id}
|
455 |
+
</div>
|
456 |
+
""", unsafe_allow_html=True)
|
457 |
+
|
458 |
+
# Display progress
|
459 |
+
total_files = len(st.session_state.all_files)
|
460 |
+
annotated_files = total_files - len(st.session_state.pending_files)
|
461 |
+
progress_percentage = int((annotated_files / total_files) * 100) if total_files > 0 else 0
|
462 |
+
|
463 |
+
st.markdown(f"""
|
464 |
+
<div class="progress-container">
|
465 |
+
<div>Progress: {annotated_files}/{total_files} samples annotated ({progress_percentage}%)</div>
|
466 |
+
<div style="margin-top: 10px; height: 10px; background-color: #eee; border-radius: 5px;">
|
467 |
+
<div style="height: 100%; width: {progress_percentage}%; background-color: #4CAF50; border-radius: 5px;"></div>
|
468 |
+
</div>
|
469 |
+
</div>
|
470 |
+
""", unsafe_allow_html=True)
|
471 |
+
|
472 |
+
# Display statistics
|
473 |
+
st.markdown(f"""
|
474 |
+
<div class="stats-container">
|
475 |
+
<div class="stat-item">
|
476 |
+
<div class="stat-value">{len(st.session_state.all_files)}</div>
|
477 |
+
<div class="stat-label">Total Files</div>
|
478 |
+
</div>
|
479 |
+
<div class="stat-item">
|
480 |
+
<div class="stat-value">{annotated_files}</div>
|
481 |
+
<div class="stat-label">Completed</div>
|
482 |
+
</div>
|
483 |
+
<div class="stat-item">
|
484 |
+
<div class="stat-value">{len(st.session_state.pending_files)}</div>
|
485 |
+
<div class="stat-label">Remaining</div>
|
486 |
+
</div>
|
487 |
+
<div class="stat-item">
|
488 |
+
<div class="stat-value">{st.session_state.hate_count}</div>
|
489 |
+
<div class="stat-label">Hate</div>
|
490 |
+
</div>
|
491 |
+
<div class="stat-item">
|
492 |
+
<div class="stat-value">{st.session_state.non_hate_count}</div>
|
493 |
+
<div class="stat-label">Non-Hate</div>
|
494 |
+
</div>
|
495 |
+
<div class="stat-item">
|
496 |
+
<div class="stat-value">{st.session_state.discard_count}</div>
|
497 |
+
<div class="stat-label">Discard</div>
|
498 |
+
</div>
|
499 |
+
</div>
|
500 |
+
""", unsafe_allow_html=True)
|
501 |
+
|
502 |
+
# Audio player section
|
503 |
+
current_file = st.session_state.current_file
|
504 |
+
|
505 |
+
# Get video ID from the file data
|
506 |
+
video_id = current_file.get('video_id', "Unknown")
|
507 |
+
if video_id == "Unknown" and "_chunk_" in current_file['name']:
|
508 |
+
# Extract from filename as fallback
|
509 |
+
video_id = current_file['name'].split("_chunk_")[0]
|
510 |
+
|
511 |
+
st.markdown(f"""
|
512 |
+
<div class="audio-container">
|
513 |
+
<div style="font-weight: bold; margin-bottom: 15px;">Currently Playing: {current_file['name']}</div>
|
514 |
+
<div class="file-info">Video ID: {video_id}</div>
|
515 |
+
""", unsafe_allow_html=True)
|
516 |
+
|
517 |
+
# Get the audio file
|
518 |
+
if 'url' in current_file:
|
519 |
+
debug_log(f"Attempting to download audio from {current_file['url']}")
|
520 |
+
with st.spinner("Loading audio file..."):
|
521 |
+
audio_bytes = download_file_from_hf(current_file['url'])
|
522 |
+
else:
|
523 |
+
# Fallback for old format
|
524 |
+
fallback_url = f"{HF_DATASET_URL}{current_file['name']}"
|
525 |
+
debug_log(f"Attempting to download audio from fallback URL {fallback_url}")
|
526 |
+
with st.spinner("Loading audio file..."):
|
527 |
+
audio_bytes = download_file_from_hf(fallback_url)
|
528 |
+
|
529 |
+
if audio_bytes:
|
530 |
+
debug_log("Audio file downloaded successfully")
|
531 |
+
# Display audio player
|
532 |
+
st.audio(audio_bytes, format='audio/wav')
|
533 |
+
|
534 |
+
# Annotation controls
|
535 |
+
col1, col2 = st.columns([3, 1])
|
536 |
+
|
537 |
+
with col1:
|
538 |
+
annotation = st.selectbox(
|
539 |
+
"Select classification:",
|
540 |
+
["-- Select --", "Hate", "Non-Hate", "Discard"],
|
541 |
+
index=0,
|
542 |
+
help="Select 'Discard' for unclear audio, background noise, or non-relevant content"
|
543 |
+
)
|
544 |
+
|
545 |
+
with col2:
|
546 |
+
st.write("")
|
547 |
+
st.write("")
|
548 |
+
if st.button("Skip File"):
|
549 |
+
debug_log("Skip file button clicked")
|
550 |
+
# Remove the current file from pending
|
551 |
+
st.session_state.pending_files.pop(0)
|
552 |
+
|
553 |
+
# Load the next file if available
|
554 |
+
if st.session_state.pending_files:
|
555 |
+
st.session_state.current_file = st.session_state.pending_files[0]
|
556 |
+
st.rerun()
|
557 |
+
else:
|
558 |
+
st.success("All files have been processed!")
|
559 |
+
|
560 |
+
if st.button("Submit & Load Next Sample", type="primary"):
|
561 |
+
if annotation == "-- Select --":
|
562 |
+
st.warning("Please select a classification before submitting.")
|
563 |
+
else:
|
564 |
+
debug_log(f"Submitting annotation: {annotation}")
|
565 |
+
# Record the annotation
|
566 |
+
new_row = {
|
567 |
+
'file_id': current_file['id'],
|
568 |
+
'file_name': current_file['name'],
|
569 |
+
'Label': annotation,
|
570 |
+
'annotator_id': st.session_state.annotator_id,
|
571 |
+
'timestamp': datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
|
572 |
+
'video_id': video_id
|
573 |
+
}
|
574 |
+
|
575 |
+
# Update the DataFrame
|
576 |
+
st.session_state.annotation_df = pd.concat([
|
577 |
+
st.session_state.annotation_df,
|
578 |
+
pd.DataFrame([new_row])
|
579 |
+
], ignore_index=True)
|
580 |
+
|
581 |
+
# Update counts
|
582 |
+
if annotation == "Hate":
|
583 |
+
st.session_state.hate_count += 1
|
584 |
+
elif annotation == "Non-Hate":
|
585 |
+
st.session_state.non_hate_count += 1
|
586 |
+
else: # Discard
|
587 |
+
st.session_state.discard_count += 1
|
588 |
+
|
589 |
+
# Save the updated annotations
|
590 |
+
success = save_annotation(st.session_state.annotation_df)
|
591 |
+
|
592 |
+
if success:
|
593 |
+
debug_log("Annotation saved successfully")
|
594 |
+
# Remove the current file from pending
|
595 |
+
st.session_state.pending_files.pop(0)
|
596 |
+
|
597 |
+
# Prefetch next file if available (new optimization)
|
598 |
+
if len(st.session_state.pending_files) > 0:
|
599 |
+
debug_log("Prefetching next file in background")
|
600 |
+
# We'll just set the next file, actual prefetching would require threading
|
601 |
+
|
602 |
+
# Load the next file if available
|
603 |
+
if st.session_state.pending_files:
|
604 |
+
st.session_state.current_file = st.session_state.pending_files[0]
|
605 |
+
st.rerun()
|
606 |
+
else:
|
607 |
+
st.success("All files have been annotated! Great job!")
|
608 |
+
else:
|
609 |
+
st.error("Failed to save annotation. Please try again.")
|
610 |
+
else:
|
611 |
+
debug_log(f"Failed to load audio file: {current_file['name']}")
|
612 |
+
st.error(f"Failed to load audio file: {current_file['name']}. The file may not exist in the repository.")
|
613 |
+
|
614 |
+
# Skip button for files that can't be loaded
|
615 |
+
if st.button("Skip This File", type="primary"):
|
616 |
+
debug_log("Skipping unloadable file")
|
617 |
+
# Remove the current file from pending
|
618 |
+
st.session_state.pending_files.pop(0)
|
619 |
+
|
620 |
+
# Load the next file if available
|
621 |
+
if st.session_state.pending_files:
|
622 |
+
st.session_state.current_file = st.session_state.pending_files[0]
|
623 |
+
st.rerun()
|
624 |
+
else:
|
625 |
+
st.success("All files have been processed!")
|
626 |
+
|
627 |
+
elif st.session_state.initialized and not st.session_state.pending_files:
|
628 |
+
debug_log("All files annotated, showing summary")
|
629 |
+
st.success("All files have been annotated! Thank you for your contribution!")
|
630 |
+
|
631 |
+
# Show summary statistics
|
632 |
+
st.markdown(f"""
|
633 |
+
<div class="stats-container">
|
634 |
+
<div class="stat-item">
|
635 |
+
<div class="stat-value">{len(st.session_state.all_files)}</div>
|
636 |
+
<div class="stat-label">Total Files</div>
|
637 |
+
</div>
|
638 |
+
<div class="stat-item">
|
639 |
+
<div class="stat-value">{st.session_state.hate_count}</div>
|
640 |
+
<div class="stat-label">Hate</div>
|
641 |
+
</div>
|
642 |
+
<div class="stat-item">
|
643 |
+
<div class="stat-value">{st.session_state.non_hate_count}</div>
|
644 |
+
<div class="stat-label">Non-Hate</div>
|
645 |
+
</div>
|
646 |
+
<div class="stat-item">
|
647 |
+
<div class="stat-value">{st.session_state.discard_count}</div>
|
648 |
+
<div class="stat-label">Discard</div>
|
649 |
+
</div>
|
650 |
+
</div>
|
651 |
+
""", unsafe_allow_html=True)
|
652 |
+
|
653 |
+
# Option to download the results
|
654 |
+
if not st.session_state.annotation_df.empty:
|
655 |
+
csv = st.session_state.annotation_df.to_csv(index=False)
|
656 |
+
b64 = base64.b64encode(csv.encode()).decode()
|
657 |
+
href = f'<a href="data:file/csv;base64,{b64}" download="annotation_results.csv">Download Results CSV</a>'
|
658 |
+
st.markdown(href, unsafe_allow_html=True)
|
659 |
+
|
660 |
+
# Two columns for buttons
|
661 |
+
col1, col2 = st.columns(2)
|
662 |
+
|
663 |
+
with col1:
|
664 |
+
if st.button("Reset and Start Over"):
|
665 |
+
debug_log("Reset and start over clicked")
|
666 |
+
st.session_state.clear()
|
667 |
+
st.rerun()
|
668 |
+
|
669 |
+
with col2:
|
670 |
+
if st.button("Add More Videos"):
|
671 |
+
debug_log("Add more videos clicked")
|
672 |
+
# Keep the annotation data but reset the initialization
|
673 |
+
st.session_state.initialized = False
|
674 |
+
st.rerun()
|
675 |
+
|
676 |
+
else:
|
677 |
+
debug_log("Showing initial configuration screen")
|
678 |
+
st.info("Please configure and initialize the application using the Configuration section above.")
|
679 |
+
|
680 |
+
# Example video IDs
|
681 |
+
st.markdown("""
|
682 |
+
### Example Video IDs
|
683 |
+
|
684 |
+
You can use the following format in the Video IDs text area:
|
685 |
+
```
|
686 |
+
0hJ2JGhM7TY
|
687 |
+
1PRABBSTpiE
|
688 |
+
4ewRgBMP_AY
|
689 |
+
```
|
690 |
+
|
691 |
+
The app will look for files like:
|
692 |
+
- 0hJ2JGhM7TY_chunk_0001.wav
|
693 |
+
- 0hJ2JGhM7TY_chunk_0002.wav
|
694 |
+
- 1PRABBSTpiE_chunk_0001.wav
|
695 |
+
- etc.
|
696 |
+
""")
|
697 |
+
|
698 |
+
# Add a footer with instructions
|
699 |
+
st.markdown("""
|
700 |
+
---
|
701 |
+
### Instructions:
|
702 |
+
1. Enter video IDs in the configuration section
|
703 |
+
2. Set your name (optional) and click "Initialize Application" to start
|
704 |
+
3. Listen to each audio sample
|
705 |
+
4. Select the appropriate classification:
|
706 |
+
- **Hate**: Contains hate speech
|
707 |
+
- **Non-Hate**: Does not contain hate speech
|
708 |
+
- **Discard**: Poor audio quality, background noise, or irrelevant content
|
709 |
+
5. Click "Submit & Load Next Sample" to continue
|
710 |
+
6. Your progress is saved automatically
|
711 |
+
7. When all samples are annotated, you can download the results
|
712 |
+
|
713 |
+
### Adding New Data
|
714 |
+
When you add new data to the Hugging Face dataset:
|
715 |
+
1. Click "Add More Videos" after completing current annotations
|
716 |
+
2. Enter the new video IDs in the configuration
|
717 |
+
3. Make sure "Only show new files" is checked
|
718 |
+
4. Initialize the application again
|
719 |
+
|
720 |
+
This will only present files that haven't been annotated yet.
|
721 |
+
|
722 |
+
### Dataset Information
|
723 |
+
The audio files are sourced from the Hugging Face dataset:
|
724 |
+
[kcrl/Hs](https://huggingface.co/datasets/kcrl/Hs)
|
725 |
+
|
726 |
+
File naming follows the pattern: `[VIDEO_ID]_chunk_[CHUNK_NUMBER].wav`
|
727 |
+
Example: `0hJ2JGhM7TY_chunk_0001.wav`
|
728 |
+
""")
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
streamlit>=1.25.0
|
2 |
+
pandas>=1.5.0
|
3 |
+
requests>=2.28.0
|