Spaces:
Runtime error
Runtime error
| import json | |
| import re | |
| import traceback | |
| from huggingface_hub.hf_api import ModelInfo, get_safetensors_metadata, model_info as get_model_info, get_hf_file_metadata, hf_hub_url | |
| from huggingface_hub import hf_hub_download | |
| # Map model IDs to the number of bytes used for one parameter. So, 4 bytes for fp32, 2 bytes for fp16, etc. | |
| # By default, we assume that the model is stored in fp32. | |
| KNOWN_BYTES_PER_PARAM = { | |
| "dwzhu/e5-base-4k": 2, | |
| } | |
| def get_model_parameters_memory(model_info: ModelInfo): | |
| '''Get the size of the model in million of parameters.''' | |
| try: | |
| safetensors = get_safetensors_metadata(model_info.id) | |
| except Exception as e: | |
| pass | |
| else: | |
| num_parameters = sum(safetensors.parameter_count.values()) | |
| return round(num_parameters / 1e6), round(num_parameters * 4 / 1024**3, 2) | |
| filenames = [sib.rfilename for sib in model_info.siblings] | |
| if "pytorch_model.bin" in filenames: | |
| url = hf_hub_url(model_info.id, filename="pytorch_model.bin") | |
| meta = get_hf_file_metadata(url) | |
| bytes_per_param = KNOWN_BYTES_PER_PARAM.get(model_info.id, 4) | |
| num_params = round(meta.size / bytes_per_param / 1e6) | |
| size_gb = round(meta.size * (4 / bytes_per_param) / 1024**3, 2) | |
| return num_params, size_gb | |
| if "pytorch_model.bin.index.json" in filenames: | |
| index_path = hf_hub_download(model_info.id, filename="pytorch_model.bin.index.json") | |
| """ | |
| { | |
| "metadata": { | |
| "total_size": 28272820224 | |
| },.... | |
| """ | |
| size = json.load(open(index_path)) | |
| bytes_per_param = KNOWN_BYTES_PER_PARAM.get(model_info.id, 4) | |
| if ("metadata" in size) and ("total_size" in size["metadata"]): | |
| return round(size["metadata"]["total_size"] / bytes_per_param / 1e6), round(size["metadata"]["total_size"] / 1024**3, 2) | |
| raise Exception(f"Could not find the model parameters for {model_info.id}") | |