Spaces:
Runtime error
Runtime error
French MTEB
Browse files- EXTERNAL_MODEL_RESULTS.json +0 -0
- app.py +467 -61
EXTERNAL_MODEL_RESULTS.json
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
app.py
CHANGED
|
@@ -38,8 +38,6 @@ TASK_LIST_CLASSIFICATION = [
|
|
| 38 |
"TweetSentimentExtractionClassification",
|
| 39 |
]
|
| 40 |
|
| 41 |
-
TASK_LIST_CLASSIFICATION_NORM = [x.replace(" (en)", "") for x in TASK_LIST_CLASSIFICATION]
|
| 42 |
-
|
| 43 |
TASK_LIST_CLASSIFICATION_DA = [
|
| 44 |
"AngryTweetsClassification",
|
| 45 |
"DanishPoliticalCommentsClassification",
|
|
@@ -51,6 +49,15 @@ TASK_LIST_CLASSIFICATION_DA = [
|
|
| 51 |
"ScalaDaClassification",
|
| 52 |
]
|
| 53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
TASK_LIST_CLASSIFICATION_NB = [
|
| 55 |
"NoRecClassification",
|
| 56 |
"NordicLangClassification",
|
|
@@ -115,6 +122,16 @@ TASK_LIST_CLUSTERING_DE = [
|
|
| 115 |
"TenKGnadClusteringS2S",
|
| 116 |
]
|
| 117 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
TASK_LIST_CLUSTERING_PL = [
|
| 119 |
"8TagsClustering",
|
| 120 |
]
|
|
@@ -132,6 +149,11 @@ TASK_LIST_PAIR_CLASSIFICATION = [
|
|
| 132 |
"TwitterURLCorpus",
|
| 133 |
]
|
| 134 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
TASK_LIST_PAIR_CLASSIFICATION_PL = [
|
| 136 |
"CDSC-E",
|
| 137 |
"PPC",
|
|
@@ -151,6 +173,11 @@ TASK_LIST_RERANKING = [
|
|
| 151 |
"StackOverflowDupQuestions",
|
| 152 |
]
|
| 153 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 154 |
TASK_LIST_RERANKING_ZH = [
|
| 155 |
"CMedQAv1",
|
| 156 |
"CMedQAv2",
|
|
@@ -176,6 +203,15 @@ TASK_LIST_RETRIEVAL = [
|
|
| 176 |
"TRECCOVID",
|
| 177 |
]
|
| 178 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 179 |
TASK_LIST_RETRIEVAL_PL = [
|
| 180 |
"ArguAna-PL",
|
| 181 |
"DBPedia-PL",
|
|
@@ -229,6 +265,12 @@ TASK_LIST_STS = [
|
|
| 229 |
"STSBenchmark",
|
| 230 |
]
|
| 231 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 232 |
TASK_LIST_STS_PL = [
|
| 233 |
"CDSC-R",
|
| 234 |
"SICK-R-PL",
|
|
@@ -247,11 +289,13 @@ TASK_LIST_STS_ZH = [
|
|
| 247 |
]
|
| 248 |
|
| 249 |
TASK_LIST_STS_OTHER = ["STS17 (ar-ar)", "STS17 (en-ar)", "STS17 (en-de)", "STS17 (en-tr)", "STS17 (es-en)", "STS17 (es-es)", "STS17 (fr-en)", "STS17 (it-en)", "STS17 (ko-ko)", "STS17 (nl-en)", "STS22 (ar)", "STS22 (de)", "STS22 (de-en)", "STS22 (de-fr)", "STS22 (de-pl)", "STS22 (es)", "STS22 (es-en)", "STS22 (es-it)", "STS22 (fr)", "STS22 (fr-pl)", "STS22 (it)", "STS22 (pl)", "STS22 (pl-en)", "STS22 (ru)", "STS22 (tr)", "STS22 (zh-en)", "STSBenchmark",]
|
| 250 |
-
TASK_LIST_STS_NORM = [x.replace(" (en)", "").replace(" (en-en)", "") for x in TASK_LIST_STS]
|
| 251 |
|
| 252 |
TASK_LIST_SUMMARIZATION = ["SummEval",]
|
| 253 |
|
|
|
|
|
|
|
| 254 |
TASK_LIST_EN = TASK_LIST_CLASSIFICATION + TASK_LIST_CLUSTERING + TASK_LIST_PAIR_CLASSIFICATION + TASK_LIST_RERANKING + TASK_LIST_RETRIEVAL + TASK_LIST_STS + TASK_LIST_SUMMARIZATION
|
|
|
|
| 255 |
TASK_LIST_PL = TASK_LIST_CLASSIFICATION_PL + TASK_LIST_CLUSTERING_PL + TASK_LIST_PAIR_CLASSIFICATION_PL + TASK_LIST_RETRIEVAL_PL + TASK_LIST_STS_PL
|
| 256 |
TASK_LIST_ZH = TASK_LIST_CLASSIFICATION_ZH + TASK_LIST_CLUSTERING_ZH + TASK_LIST_PAIR_CLASSIFICATION_ZH + TASK_LIST_RERANKING_ZH + TASK_LIST_RETRIEVAL_ZH + TASK_LIST_STS_ZH
|
| 257 |
|
|
@@ -276,11 +320,22 @@ def make_clickable_model(model_name, link=None):
|
|
| 276 |
|
| 277 |
# Models without metadata, thus we cannot fetch their results naturally
|
| 278 |
EXTERNAL_MODELS = [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 279 |
"all-MiniLM-L12-v2",
|
| 280 |
"all-MiniLM-L6-v2",
|
| 281 |
"all-mpnet-base-v2",
|
| 282 |
"allenai-specter",
|
| 283 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 284 |
"bert-base-swedish-cased",
|
| 285 |
"bert-base-uncased",
|
| 286 |
"bge-base-zh-v1.5",
|
|
@@ -292,18 +347,21 @@ EXTERNAL_MODELS = [
|
|
| 292 |
"dfm-encoder-large-v1",
|
| 293 |
"dfm-sentence-encoder-large-1",
|
| 294 |
"distiluse-base-multilingual-cased-v2",
|
| 295 |
-
"DanskBERT",
|
| 296 |
"e5-base",
|
| 297 |
"e5-large",
|
| 298 |
-
"e5-
|
|
|
|
| 299 |
"electra-small-nordic",
|
| 300 |
"electra-small-swedish-cased-discriminator",
|
|
|
|
|
|
|
|
|
|
| 301 |
"gbert-base",
|
| 302 |
"gbert-large",
|
| 303 |
"gelectra-base",
|
| 304 |
"gelectra-large",
|
| 305 |
-
"gottbert-base",
|
| 306 |
"glove.6B.300d",
|
|
|
|
| 307 |
"gtr-t5-base",
|
| 308 |
"gtr-t5-large",
|
| 309 |
"gtr-t5-xl",
|
|
@@ -311,11 +369,11 @@ EXTERNAL_MODELS = [
|
|
| 311 |
"herbert-base-retrieval-v2",
|
| 312 |
"komninos",
|
| 313 |
"luotuo-bert-medium",
|
| 314 |
-
"LASER2",
|
| 315 |
-
"LaBSE",
|
| 316 |
"m3e-base",
|
| 317 |
-
"m3e-large",
|
|
|
|
| 318 |
"msmarco-bert-co-condensor",
|
|
|
|
| 319 |
"multilingual-e5-base",
|
| 320 |
"multilingual-e5-large",
|
| 321 |
"multilingual-e5-small",
|
|
@@ -330,14 +388,19 @@ EXTERNAL_MODELS = [
|
|
| 330 |
"paraphrase-multilingual-MiniLM-L12-v2",
|
| 331 |
"paraphrase-multilingual-mpnet-base-v2",
|
| 332 |
"sentence-bert-swedish-cased",
|
|
|
|
|
|
|
|
|
|
| 333 |
"sentence-t5-base",
|
| 334 |
"sentence-t5-large",
|
| 335 |
"sentence-t5-xl",
|
| 336 |
"sentence-t5-xxl",
|
|
|
|
| 337 |
"sup-simcse-bert-base-uncased",
|
| 338 |
"st-polish-paraphrase-from-distilroberta",
|
| 339 |
-
"st-polish-paraphrase-from-mpnet",
|
| 340 |
"text2vec-base-chinese",
|
|
|
|
| 341 |
"text2vec-large-chinese",
|
| 342 |
"text-embedding-3-small",
|
| 343 |
"text-embedding-3-large",
|
|
@@ -353,38 +416,62 @@ EXTERNAL_MODELS = [
|
|
| 353 |
"text-search-curie-001",
|
| 354 |
"text-search-davinci-001",
|
| 355 |
"titan-embed-text-v1",
|
|
|
|
|
|
|
|
|
|
|
|
|
| 356 |
"unsup-simcse-bert-base-uncased",
|
| 357 |
"use-cmlm-multilingual",
|
|
|
|
|
|
|
| 358 |
"voyage-lite-01-instruct",
|
| 359 |
-
"voyage-lite-02-instruct",
|
| 360 |
"xlm-roberta-base",
|
| 361 |
-
"xlm-roberta-large",
|
| 362 |
]
|
| 363 |
|
| 364 |
EXTERNAL_MODEL_TO_LINK = {
|
|
|
|
|
|
|
| 365 |
"allenai-specter": "https://huggingface.co/sentence-transformers/allenai-specter",
|
| 366 |
"allenai-specter": "https://huggingface.co/sentence-transformers/allenai-specter",
|
| 367 |
"all-MiniLM-L12-v2": "https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2",
|
| 368 |
"all-MiniLM-L6-v2": "https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2",
|
| 369 |
"all-mpnet-base-v2": "https://huggingface.co/sentence-transformers/all-mpnet-base-v2",
|
| 370 |
"Baichuan-text-embedding": "https://platform.baichuan-ai.com/docs/text-Embedding",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 371 |
"bert-base-swedish-cased": "https://huggingface.co/KB/bert-base-swedish-cased",
|
| 372 |
"bert-base-uncased": "https://huggingface.co/bert-base-uncased",
|
| 373 |
"bge-base-zh-v1.5": "https://huggingface.co/BAAI/bge-base-zh-v1.5",
|
| 374 |
"bge-large-zh-v1.5": "https://huggingface.co/BAAI/bge-large-zh-v1.5",
|
| 375 |
"bge-large-zh-noinstruct": "https://huggingface.co/BAAI/bge-large-zh-noinstruct",
|
| 376 |
"bge-small-zh-v1.5": "https://huggingface.co/BAAI/bge-small-zh-v1.5",
|
|
|
|
|
|
|
| 377 |
"contriever-base-msmarco": "https://huggingface.co/nthakur/contriever-base-msmarco",
|
| 378 |
"cross-en-de-roberta-sentence-transformer": "https://huggingface.co/T-Systems-onsite/cross-en-de-roberta-sentence-transformer",
|
| 379 |
"DanskBERT": "https://huggingface.co/vesteinn/DanskBERT",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 380 |
"distiluse-base-multilingual-cased-v2": "https://huggingface.co/sentence-transformers/distiluse-base-multilingual-cased-v2",
|
| 381 |
"dfm-encoder-large-v1": "https://huggingface.co/chcaa/dfm-encoder-large-v1",
|
| 382 |
"dfm-sentence-encoder-large-1": "https://huggingface.co/chcaa/dfm-encoder-large-v1",
|
| 383 |
"e5-base": "https://huggingface.co/intfloat/e5-base",
|
| 384 |
"e5-large": "https://huggingface.co/intfloat/e5-large",
|
|
|
|
| 385 |
"e5-small": "https://huggingface.co/intfloat/e5-small",
|
| 386 |
"electra-small-nordic": "https://huggingface.co/jonfd/electra-small-nordic",
|
| 387 |
"electra-small-swedish-cased-discriminator": "https://huggingface.co/KBLab/electra-small-swedish-cased-discriminator",
|
|
|
|
|
|
|
|
|
|
| 388 |
"gbert-base": "https://huggingface.co/deepset/gbert-base",
|
| 389 |
"gbert-large": "https://huggingface.co/deepset/gbert-large",
|
| 390 |
"gelectra-base": "https://huggingface.co/deepset/gelectra-base",
|
|
@@ -402,7 +489,9 @@ EXTERNAL_MODEL_TO_LINK = {
|
|
| 402 |
"LaBSE": "https://huggingface.co/sentence-transformers/LaBSE",
|
| 403 |
"m3e-base": "https://huggingface.co/moka-ai/m3e-base",
|
| 404 |
"m3e-large": "https://huggingface.co/moka-ai/m3e-large",
|
|
|
|
| 405 |
"msmarco-bert-co-condensor": "https://huggingface.co/sentence-transformers/msmarco-bert-co-condensor",
|
|
|
|
| 406 |
"multilingual-e5-base": "https://huggingface.co/intfloat/multilingual-e5-base",
|
| 407 |
"multilingual-e5-large": "https://huggingface.co/intfloat/multilingual-e5-large",
|
| 408 |
"multilingual-e5-small": "https://huggingface.co/intfloat/multilingual-e5-small",
|
|
@@ -414,13 +503,18 @@ EXTERNAL_MODEL_TO_LINK = {
|
|
| 414 |
"nomic-embed-text-v1.5-512": "https://huggingface.co/nomic-ai/nomic-embed-text-v1.5",
|
| 415 |
"norbert3-base": "https://huggingface.co/ltg/norbert3-base",
|
| 416 |
"norbert3-large": "https://huggingface.co/ltg/norbert3-large",
|
|
|
|
| 417 |
"paraphrase-multilingual-mpnet-base-v2": "https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2",
|
| 418 |
"paraphrase-multilingual-MiniLM-L12-v2": "https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2",
|
|
|
|
|
|
|
|
|
|
| 419 |
"sentence-bert-swedish-cased": "https://huggingface.co/KBLab/sentence-bert-swedish-cased",
|
| 420 |
"sentence-t5-base": "https://huggingface.co/sentence-transformers/sentence-t5-base",
|
| 421 |
"sentence-t5-large": "https://huggingface.co/sentence-transformers/sentence-t5-large",
|
| 422 |
"sentence-t5-xl": "https://huggingface.co/sentence-transformers/sentence-t5-xl",
|
| 423 |
"sentence-t5-xxl": "https://huggingface.co/sentence-transformers/sentence-t5-xxl",
|
|
|
|
| 424 |
"sup-simcse-bert-base-uncased": "https://huggingface.co/princeton-nlp/sup-simcse-bert-base-uncased",
|
| 425 |
"st-polish-paraphrase-from-distilroberta": "https://huggingface.co/sdadas/st-polish-paraphrase-from-distilroberta",
|
| 426 |
"st-polish-paraphrase-from-mpnet": "https://huggingface.co/sdadas/st-polish-paraphrase-from-mpnet",
|
|
@@ -441,8 +535,14 @@ EXTERNAL_MODEL_TO_LINK = {
|
|
| 441 |
"text-search-babbage-001": "https://openai.com/blog/introducing-text-and-code-embeddings",
|
| 442 |
"text-search-davinci-001": "https://openai.com/blog/introducing-text-and-code-embeddings",
|
| 443 |
"titan-embed-text-v1": "https://docs.aws.amazon.com/bedrock/latest/userguide/embeddings.html",
|
|
|
|
|
|
|
|
|
|
|
|
|
| 444 |
"unsup-simcse-bert-base-uncased": "https://huggingface.co/princeton-nlp/unsup-simcse-bert-base-uncased",
|
| 445 |
"use-cmlm-multilingual": "https://huggingface.co/sentence-transformers/use-cmlm-multilingual",
|
|
|
|
|
|
|
| 446 |
"voyage-lite-01-instruct": "https://docs.voyageai.com/embeddings/",
|
| 447 |
"voyage-lite-02-instruct": "https://docs.voyageai.com/embeddings/",
|
| 448 |
"xlm-roberta-base": "https://huggingface.co/xlm-roberta-base",
|
|
@@ -450,28 +550,46 @@ EXTERNAL_MODEL_TO_LINK = {
|
|
| 450 |
}
|
| 451 |
|
| 452 |
EXTERNAL_MODEL_TO_DIM = {
|
|
|
|
|
|
|
| 453 |
"all-MiniLM-L12-v2": 384,
|
| 454 |
"all-MiniLM-L6-v2": 384,
|
| 455 |
"all-mpnet-base-v2": 768,
|
| 456 |
"allenai-specter": 768,
|
| 457 |
"Baichuan-text-embedding": 1024,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 458 |
"bert-base-swedish-cased": 768,
|
| 459 |
"bert-base-uncased": 768,
|
| 460 |
"bge-base-zh-v1.5": 768,
|
| 461 |
"bge-large-zh-v1.5": 1024,
|
| 462 |
"bge-large-zh-noinstruct": 1024,
|
| 463 |
"bge-small-zh-v1.5": 512,
|
|
|
|
|
|
|
| 464 |
"contriever-base-msmarco": 768,
|
| 465 |
"cross-en-de-roberta-sentence-transformer": 768,
|
| 466 |
"DanskBERT": 768,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 467 |
"distiluse-base-multilingual-cased-v2": 512,
|
| 468 |
"dfm-encoder-large-v1": 1024,
|
| 469 |
"dfm-sentence-encoder-large-1": 1024,
|
| 470 |
"e5-base": 768,
|
|
|
|
|
|
|
| 471 |
"e5-small": 384,
|
| 472 |
-
"e5-large": 1024,
|
| 473 |
"electra-small-nordic": 256,
|
| 474 |
"electra-small-swedish-cased-discriminator": 256,
|
|
|
|
|
|
|
|
|
|
| 475 |
"luotuo-bert-medium": 768,
|
| 476 |
"LASER2": 1024,
|
| 477 |
"LaBSE": 768,
|
|
@@ -489,7 +607,9 @@ EXTERNAL_MODEL_TO_DIM = {
|
|
| 489 |
"komninos": 300,
|
| 490 |
"m3e-base": 768,
|
| 491 |
"m3e-large": 768,
|
|
|
|
| 492 |
"msmarco-bert-co-condensor": 768,
|
|
|
|
| 493 |
"multilingual-e5-base": 768,
|
| 494 |
"multilingual-e5-small": 384,
|
| 495 |
"multilingual-e5-large": 1024,
|
|
@@ -501,13 +621,18 @@ EXTERNAL_MODEL_TO_DIM = {
|
|
| 501 |
"nomic-embed-text-v1.5-512": 512,
|
| 502 |
"norbert3-base": 768,
|
| 503 |
"norbert3-large": 1024,
|
|
|
|
| 504 |
"paraphrase-multilingual-MiniLM-L12-v2": 384,
|
| 505 |
"paraphrase-multilingual-mpnet-base-v2": 768,
|
|
|
|
|
|
|
|
|
|
| 506 |
"sentence-bert-swedish-cased": 768,
|
| 507 |
"sentence-t5-base": 768,
|
| 508 |
"sentence-t5-large": 768,
|
| 509 |
"sentence-t5-xl": 768,
|
| 510 |
"sentence-t5-xxl": 768,
|
|
|
|
| 511 |
"sup-simcse-bert-base-uncased": 768,
|
| 512 |
"st-polish-paraphrase-from-distilroberta": 768,
|
| 513 |
"st-polish-paraphrase-from-mpnet": 768,
|
|
@@ -528,8 +653,14 @@ EXTERNAL_MODEL_TO_DIM = {
|
|
| 528 |
"text-search-curie-001": 4096,
|
| 529 |
"text-search-davinci-001": 12288,
|
| 530 |
"titan-embed-text-v1": 1536,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 531 |
"unsup-simcse-bert-base-uncased": 768,
|
| 532 |
"use-cmlm-multilingual": 768,
|
|
|
|
|
|
|
| 533 |
"voyage-lite-01-instruct": 1024,
|
| 534 |
"voyage-lite-02-instruct": 1024,
|
| 535 |
"xlm-roberta-base": 768,
|
|
@@ -537,28 +668,46 @@ EXTERNAL_MODEL_TO_DIM = {
|
|
| 537 |
}
|
| 538 |
|
| 539 |
EXTERNAL_MODEL_TO_SEQLEN = {
|
|
|
|
|
|
|
| 540 |
"all-MiniLM-L12-v2": 512,
|
| 541 |
"all-MiniLM-L6-v2": 512,
|
| 542 |
"all-mpnet-base-v2": 514,
|
| 543 |
"allenai-specter": 512,
|
| 544 |
"Baichuan-text-embedding": 512,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 545 |
"bert-base-swedish-cased": 512,
|
| 546 |
"bert-base-uncased": 512,
|
| 547 |
"bge-base-zh-v1.5": 512,
|
| 548 |
"bge-large-zh-v1.5": 512,
|
| 549 |
"bge-large-zh-noinstruct": 512,
|
| 550 |
-
"bge-small-zh-v1.5": 512,
|
|
|
|
|
|
|
| 551 |
"contriever-base-msmarco": 512,
|
| 552 |
"cross-en-de-roberta-sentence-transformer": 514,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 553 |
"DanskBERT": 514,
|
| 554 |
"dfm-encoder-large-v1": 512,
|
| 555 |
"dfm-sentence-encoder-large-1": 512,
|
| 556 |
"distiluse-base-multilingual-cased-v2": 512,
|
| 557 |
"e5-base": 512,
|
| 558 |
"e5-large": 512,
|
|
|
|
| 559 |
"e5-small": 512,
|
| 560 |
"electra-small-nordic": 512,
|
| 561 |
"electra-small-swedish-cased-discriminator": 512,
|
|
|
|
|
|
|
|
|
|
| 562 |
"gbert-base": 512,
|
| 563 |
"gbert-large": 512,
|
| 564 |
"gelectra-base": 512,
|
|
@@ -575,8 +724,10 @@ EXTERNAL_MODEL_TO_SEQLEN = {
|
|
| 575 |
"LASER2": "N/A",
|
| 576 |
"LaBSE": 512,
|
| 577 |
"m3e-base": 512,
|
| 578 |
-
"m3e-large": 512,
|
|
|
|
| 579 |
"msmarco-bert-co-condensor": 512,
|
|
|
|
| 580 |
"multilingual-e5-base": 514,
|
| 581 |
"multilingual-e5-large": 514,
|
| 582 |
"multilingual-e5-small": 512,
|
|
@@ -588,13 +739,18 @@ EXTERNAL_MODEL_TO_SEQLEN = {
|
|
| 588 |
"nomic-embed-text-v1.5-512": 8192,
|
| 589 |
"norbert3-base": 512,
|
| 590 |
"norbert3-large": 512,
|
|
|
|
| 591 |
"paraphrase-multilingual-MiniLM-L12-v2": 512,
|
| 592 |
"paraphrase-multilingual-mpnet-base-v2": 514,
|
|
|
|
|
|
|
|
|
|
| 593 |
"sentence-bert-swedish-cased": 512,
|
| 594 |
"sentence-t5-base": 512,
|
| 595 |
"sentence-t5-large": 512,
|
| 596 |
"sentence-t5-xl": 512,
|
| 597 |
"sentence-t5-xxl": 512,
|
|
|
|
| 598 |
"sup-simcse-bert-base-uncased": 512,
|
| 599 |
"st-polish-paraphrase-from-distilroberta": 514,
|
| 600 |
"st-polish-paraphrase-from-mpnet": 514,
|
|
@@ -615,8 +771,14 @@ EXTERNAL_MODEL_TO_SEQLEN = {
|
|
| 615 |
"text-search-curie-001": 2046,
|
| 616 |
"text-search-davinci-001": 2046,
|
| 617 |
"titan-embed-text-v1": 8000,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 618 |
"use-cmlm-multilingual": 512,
|
| 619 |
"unsup-simcse-bert-base-uncased": 512,
|
|
|
|
|
|
|
| 620 |
"voyage-lite-01-instruct": 4000,
|
| 621 |
"voyage-lite-02-instruct": 4000,
|
| 622 |
"xlm-roberta-base": 514,
|
|
@@ -628,23 +790,39 @@ EXTERNAL_MODEL_TO_SIZE = {
|
|
| 628 |
"all-MiniLM-L12-v2": 0.13,
|
| 629 |
"all-MiniLM-L6-v2": 0.09,
|
| 630 |
"all-mpnet-base-v2": 0.44,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 631 |
"bert-base-uncased": 0.44,
|
| 632 |
"bert-base-swedish-cased": 0.50,
|
| 633 |
"bge-base-zh-v1.5": 0.41,
|
| 634 |
"bge-large-zh-v1.5": 1.30,
|
| 635 |
"bge-large-zh-noinstruct": 1.30,
|
| 636 |
-
"bge-small-zh-v1.5": 0.10,
|
|
|
|
|
|
|
| 637 |
"cross-en-de-roberta-sentence-transformer": 1.11,
|
| 638 |
"contriever-base-msmarco": 0.44,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 639 |
"DanskBERT": 0.50,
|
| 640 |
"distiluse-base-multilingual-cased-v2": 0.54,
|
| 641 |
"dfm-encoder-large-v1": 1.42,
|
| 642 |
"dfm-sentence-encoder-large-1": 1.63,
|
| 643 |
"e5-base": 0.44,
|
| 644 |
-
"e5-small": 0.13,
|
| 645 |
"e5-large": 1.34,
|
|
|
|
|
|
|
| 646 |
"electra-small-nordic": 0.09,
|
| 647 |
"electra-small-swedish-cased-discriminator": 0.06,
|
|
|
|
|
|
|
|
|
|
| 648 |
"gbert-base": 0.44,
|
| 649 |
"gbert-large": 1.35,
|
| 650 |
"gelectra-base": 0.44,
|
|
@@ -663,6 +841,7 @@ EXTERNAL_MODEL_TO_SIZE = {
|
|
| 663 |
"m3e-base": 0.41,
|
| 664 |
"m3e-large": 0.41,
|
| 665 |
"msmarco-bert-co-condensor": 0.44,
|
|
|
|
| 666 |
"multilingual-e5-base": 1.11,
|
| 667 |
"multilingual-e5-small": 0.47,
|
| 668 |
"multilingual-e5-large": 2.24,
|
|
@@ -676,11 +855,15 @@ EXTERNAL_MODEL_TO_SIZE = {
|
|
| 676 |
"norbert3-large": 1.47,
|
| 677 |
"paraphrase-multilingual-mpnet-base-v2": 1.11,
|
| 678 |
"paraphrase-multilingual-MiniLM-L12-v2": 0.47,
|
|
|
|
|
|
|
|
|
|
| 679 |
"sentence-bert-swedish-cased": 0.50,
|
| 680 |
"sentence-t5-base": 0.22,
|
| 681 |
"sentence-t5-large": 0.67,
|
| 682 |
"sentence-t5-xl": 2.48,
|
| 683 |
"sentence-t5-xxl": 9.73,
|
|
|
|
| 684 |
"sup-simcse-bert-base-uncased": 0.44,
|
| 685 |
"st-polish-paraphrase-from-distilroberta": 0.50,
|
| 686 |
"st-polish-paraphrase-from-mpnet": 0.50,
|
|
@@ -807,16 +990,9 @@ MODELS_TO_SKIP = {
|
|
| 807 |
"atian-chapters/Chapters-SFR-Embedding-Mistral", # Copy
|
| 808 |
"rlsChapters/Chapters-SFR-Embedding-Mistral", # Copy
|
| 809 |
"TitanML/jina-v2-base-en-embed", # Copy
|
| 810 |
-
"MaziyarPanahi/GritLM-8x7B-GGUF", # GGUF variant
|
| 811 |
}
|
| 812 |
|
| 813 |
-
|
| 814 |
-
if os.path.exists("EXTERNAL_MODEL_RESULTS.json"):
|
| 815 |
-
with open("EXTERNAL_MODEL_RESULTS.json") as f:
|
| 816 |
-
EXTERNAL_MODEL_RESULTS = json.load(f)
|
| 817 |
-
else:
|
| 818 |
-
EXTERNAL_MODEL_RESULTS = {model: {k: {v: []} for k, v in TASK_TO_METRIC.items()} for model in EXTERNAL_MODELS}
|
| 819 |
-
|
| 820 |
def add_lang(examples):
|
| 821 |
if not(examples["eval_language"]):
|
| 822 |
examples["mteb_dataset_name_with_lang"] = examples["mteb_dataset_name"]
|
|
@@ -824,48 +1000,62 @@ def add_lang(examples):
|
|
| 824 |
examples["mteb_dataset_name_with_lang"] = examples["mteb_dataset_name"] + f' ({examples["eval_language"]})'
|
| 825 |
return examples
|
| 826 |
|
|
|
|
|
|
|
| 827 |
def add_task(examples):
|
| 828 |
# Could be added to the dataset loading script instead
|
| 829 |
-
if examples["mteb_dataset_name"] in
|
| 830 |
examples["mteb_task"] = "Classification"
|
| 831 |
-
elif examples["mteb_dataset_name"] in TASK_LIST_CLUSTERING + TASK_LIST_CLUSTERING_DE + TASK_LIST_CLUSTERING_PL + TASK_LIST_CLUSTERING_ZH:
|
| 832 |
examples["mteb_task"] = "Clustering"
|
| 833 |
-
elif examples["mteb_dataset_name"] in TASK_LIST_PAIR_CLASSIFICATION + TASK_LIST_PAIR_CLASSIFICATION_PL + TASK_LIST_PAIR_CLASSIFICATION_ZH:
|
| 834 |
examples["mteb_task"] = "PairClassification"
|
| 835 |
-
elif examples["mteb_dataset_name"] in TASK_LIST_RERANKING + TASK_LIST_RERANKING_ZH:
|
| 836 |
examples["mteb_task"] = "Reranking"
|
| 837 |
-
elif examples["mteb_dataset_name"] in TASK_LIST_RETRIEVAL_NORM + TASK_LIST_RETRIEVAL_PL + TASK_LIST_RETRIEVAL_ZH:
|
| 838 |
examples["mteb_task"] = "Retrieval"
|
| 839 |
-
elif examples["mteb_dataset_name"] in
|
| 840 |
examples["mteb_task"] = "STS"
|
| 841 |
-
elif examples["mteb_dataset_name"] in TASK_LIST_SUMMARIZATION:
|
| 842 |
examples["mteb_task"] = "Summarization"
|
| 843 |
-
elif examples["mteb_dataset_name"] in
|
| 844 |
examples["mteb_task"] = "BitextMining"
|
| 845 |
else:
|
| 846 |
print("WARNING: Task not found for dataset", examples["mteb_dataset_name"])
|
| 847 |
examples["mteb_task"] = "Unknown"
|
| 848 |
return examples
|
| 849 |
|
| 850 |
-
if
|
| 851 |
-
|
| 852 |
-
|
| 853 |
-
|
| 854 |
-
|
| 855 |
-
|
| 856 |
-
|
| 857 |
-
|
| 858 |
-
|
| 859 |
-
|
| 860 |
-
|
| 861 |
-
|
| 862 |
-
|
| 863 |
-
|
| 864 |
-
|
| 865 |
-
|
| 866 |
-
|
| 867 |
-
|
| 868 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 869 |
|
| 870 |
def get_dim_seq_size(model):
|
| 871 |
filenames = [sib.rfilename for sib in model.siblings]
|
|
@@ -1136,6 +1326,68 @@ def get_mteb_average_zh():
|
|
| 1136 |
|
| 1137 |
return DATA_OVERALL_ZH
|
| 1138 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1139 |
def get_mteb_average_pl():
|
| 1140 |
global DATA_OVERALL_PL, DATA_CLASSIFICATION_PL, DATA_CLUSTERING_PL, DATA_PAIR_CLASSIFICATION_PL, DATA_RETRIEVAL_PL, DATA_STS_PL
|
| 1141 |
DATA_OVERALL_PL = get_mteb_data(
|
|
@@ -1191,6 +1443,7 @@ def get_mteb_average_pl():
|
|
| 1191 |
return DATA_OVERALL_PL
|
| 1192 |
|
| 1193 |
get_mteb_average()
|
|
|
|
| 1194 |
get_mteb_average_pl()
|
| 1195 |
get_mteb_average_zh()
|
| 1196 |
DATA_BITEXT_MINING = get_mteb_data(["BitextMining"], [], TASK_LIST_BITEXT_MINING)
|
|
@@ -1212,6 +1465,7 @@ for d in [
|
|
| 1212 |
DATA_BITEXT_MINING_OTHER,
|
| 1213 |
DATA_CLASSIFICATION_EN,
|
| 1214 |
DATA_CLASSIFICATION_DA,
|
|
|
|
| 1215 |
DATA_CLASSIFICATION_NB,
|
| 1216 |
DATA_CLASSIFICATION_PL,
|
| 1217 |
DATA_CLASSIFICATION_SV,
|
|
@@ -1219,21 +1473,27 @@ for d in [
|
|
| 1219 |
DATA_CLASSIFICATION_OTHER,
|
| 1220 |
DATA_CLUSTERING,
|
| 1221 |
DATA_CLUSTERING_DE,
|
|
|
|
| 1222 |
DATA_CLUSTERING_PL,
|
| 1223 |
DATA_CLUSTERING_ZH,
|
| 1224 |
DATA_PAIR_CLASSIFICATION,
|
|
|
|
| 1225 |
DATA_PAIR_CLASSIFICATION_PL,
|
| 1226 |
DATA_PAIR_CLASSIFICATION_ZH,
|
| 1227 |
DATA_RERANKING,
|
|
|
|
| 1228 |
DATA_RERANKING_ZH,
|
| 1229 |
DATA_RETRIEVAL,
|
|
|
|
| 1230 |
DATA_RETRIEVAL_PL,
|
| 1231 |
DATA_RETRIEVAL_ZH,
|
| 1232 |
DATA_STS_EN,
|
|
|
|
| 1233 |
DATA_STS_PL,
|
| 1234 |
DATA_STS_ZH,
|
| 1235 |
DATA_STS_OTHER,
|
| 1236 |
DATA_SUMMARIZATION,
|
|
|
|
| 1237 |
]:
|
| 1238 |
# NUM_SCORES += d.iloc[:, 1:].apply(lambda x: sum([1 for y in x if isinstance(y, float) and not np.isnan(y)]), axis=1).sum()
|
| 1239 |
cols_to_ignore = 3 if "Average" in d.columns else 2
|
|
@@ -1308,7 +1568,26 @@ with block:
|
|
| 1308 |
)
|
| 1309 |
with gr.Row():
|
| 1310 |
data_run_overall_zh = gr.Button("Refresh")
|
| 1311 |
-
data_run_overall_zh.click(get_mteb_average_zh, inputs=None, outputs=data_overall_zh)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1312 |
with gr.TabItem("Polish"):
|
| 1313 |
with gr.Row():
|
| 1314 |
gr.Markdown("""
|
|
@@ -1433,6 +1712,27 @@ with block:
|
|
| 1433 |
partial(get_mteb_data, tasks=["Classification"], datasets=TASK_LIST_CLASSIFICATION_DA),
|
| 1434 |
outputs=data_run_classification_da,
|
| 1435 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1436 |
with gr.TabItem("Norwegian"):
|
| 1437 |
with gr.Row():
|
| 1438 |
gr.Markdown("""
|
|
@@ -1558,6 +1858,27 @@ with block:
|
|
| 1558 |
partial(get_mteb_data, tasks=["Clustering"], datasets=TASK_LIST_CLUSTERING_ZH),
|
| 1559 |
outputs=data_clustering_zh,
|
| 1560 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1561 |
with gr.TabItem("German"):
|
| 1562 |
with gr.Row():
|
| 1563 |
gr.Markdown("""
|
|
@@ -1642,6 +1963,27 @@ with block:
|
|
| 1642 |
partial(get_mteb_data, tasks=["PairClassification"], datasets=TASK_LIST_PAIR_CLASSIFICATION_ZH),
|
| 1643 |
outputs=data_pair_classification_zh,
|
| 1644 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1645 |
with gr.TabItem("Polish"):
|
| 1646 |
with gr.Row():
|
| 1647 |
gr.Markdown("""
|
|
@@ -1705,6 +2047,27 @@ with block:
|
|
| 1705 |
partial(get_mteb_data, tasks=["Reranking"], datasets=TASK_LIST_RERANKING_ZH),
|
| 1706 |
outputs=data_reranking_zh,
|
| 1707 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1708 |
with gr.TabItem("Retrieval"):
|
| 1709 |
with gr.TabItem("English"):
|
| 1710 |
with gr.Row():
|
|
@@ -1737,18 +2100,40 @@ with block:
|
|
| 1737 |
- **Credits:** [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding)
|
| 1738 |
""")
|
| 1739 |
with gr.Row():
|
| 1740 |
-
|
| 1741 |
-
|
| 1742 |
# Add support for more columns than existing as a buffer for CQADupstack & other Retrieval tasks (e.g. MSMARCOv2)
|
| 1743 |
-
datatype=["number", "markdown"] + ["number"] * len(
|
| 1744 |
type="pandas",
|
| 1745 |
)
|
| 1746 |
with gr.Row():
|
| 1747 |
-
|
| 1748 |
-
|
| 1749 |
-
partial(get_mteb_data, tasks=["Retrieval"], datasets=
|
| 1750 |
-
outputs=
|
| 1751 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1752 |
with gr.TabItem("Polish"):
|
| 1753 |
with gr.Row():
|
| 1754 |
gr.Markdown("""
|
|
@@ -1813,6 +2198,27 @@ with block:
|
|
| 1813 |
partial(get_mteb_data, tasks=["STS"], datasets=TASK_LIST_STS_ZH),
|
| 1814 |
outputs=data_sts_zh,
|
| 1815 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1816 |
with gr.TabItem("Polish"):
|
| 1817 |
with gr.Row():
|
| 1818 |
gr.Markdown("""
|
|
|
|
| 38 |
"TweetSentimentExtractionClassification",
|
| 39 |
]
|
| 40 |
|
|
|
|
|
|
|
| 41 |
TASK_LIST_CLASSIFICATION_DA = [
|
| 42 |
"AngryTweetsClassification",
|
| 43 |
"DanishPoliticalCommentsClassification",
|
|
|
|
| 49 |
"ScalaDaClassification",
|
| 50 |
]
|
| 51 |
|
| 52 |
+
TASK_LIST_CLASSIFICATION_FR = [
|
| 53 |
+
"AmazonReviewsClassification (fr)",
|
| 54 |
+
"MasakhaNEWSClassification (fra)",
|
| 55 |
+
"MassiveIntentClassification (fr)",
|
| 56 |
+
"MassiveScenarioClassification (fr)",
|
| 57 |
+
"MTOPDomainClassification (fr)",
|
| 58 |
+
"MTOPIntentClassification (fr)",
|
| 59 |
+
]
|
| 60 |
+
|
| 61 |
TASK_LIST_CLASSIFICATION_NB = [
|
| 62 |
"NoRecClassification",
|
| 63 |
"NordicLangClassification",
|
|
|
|
| 122 |
"TenKGnadClusteringS2S",
|
| 123 |
]
|
| 124 |
|
| 125 |
+
TASK_LIST_CLUSTERING_FR = [
|
| 126 |
+
"AlloProfClusteringP2P",
|
| 127 |
+
"AlloProfClusteringS2S",
|
| 128 |
+
"HALClusteringS2S",
|
| 129 |
+
"MLSUMClusteringP2P",
|
| 130 |
+
"MLSUMClusteringS2S",
|
| 131 |
+
"MasakhaNEWSClusteringP2P (fra)",
|
| 132 |
+
"MasakhaNEWSClusteringS2S (fra)",
|
| 133 |
+
]
|
| 134 |
+
|
| 135 |
TASK_LIST_CLUSTERING_PL = [
|
| 136 |
"8TagsClustering",
|
| 137 |
]
|
|
|
|
| 149 |
"TwitterURLCorpus",
|
| 150 |
]
|
| 151 |
|
| 152 |
+
TASK_LIST_PAIR_CLASSIFICATION_FR = [
|
| 153 |
+
"OpusparcusPC (fr)",
|
| 154 |
+
"PawsX (fr)",
|
| 155 |
+
]
|
| 156 |
+
|
| 157 |
TASK_LIST_PAIR_CLASSIFICATION_PL = [
|
| 158 |
"CDSC-E",
|
| 159 |
"PPC",
|
|
|
|
| 173 |
"StackOverflowDupQuestions",
|
| 174 |
]
|
| 175 |
|
| 176 |
+
TASK_LIST_RERANKING_FR = [
|
| 177 |
+
"AlloprofReranking",
|
| 178 |
+
"SyntecReranking",
|
| 179 |
+
]
|
| 180 |
+
|
| 181 |
TASK_LIST_RERANKING_ZH = [
|
| 182 |
"CMedQAv1",
|
| 183 |
"CMedQAv2",
|
|
|
|
| 203 |
"TRECCOVID",
|
| 204 |
]
|
| 205 |
|
| 206 |
+
TASK_LIST_RETRIEVAL_FR = [
|
| 207 |
+
"AlloprofRetrieval",
|
| 208 |
+
"BSARDRetrieval",
|
| 209 |
+
"MintakaRetrieval (fr)",
|
| 210 |
+
# "MultiLongDocRetrieval",
|
| 211 |
+
"SyntecRetrieval",
|
| 212 |
+
"XPQARetrieval (fr)",
|
| 213 |
+
]
|
| 214 |
+
|
| 215 |
TASK_LIST_RETRIEVAL_PL = [
|
| 216 |
"ArguAna-PL",
|
| 217 |
"DBPedia-PL",
|
|
|
|
| 265 |
"STSBenchmark",
|
| 266 |
]
|
| 267 |
|
| 268 |
+
TASK_LIST_STS_FR = [
|
| 269 |
+
"STS22 (fr)",
|
| 270 |
+
"STSBenchmarkMultilingualSTS (fr)",
|
| 271 |
+
"SICKFr",
|
| 272 |
+
]
|
| 273 |
+
|
| 274 |
TASK_LIST_STS_PL = [
|
| 275 |
"CDSC-R",
|
| 276 |
"SICK-R-PL",
|
|
|
|
| 289 |
]
|
| 290 |
|
| 291 |
TASK_LIST_STS_OTHER = ["STS17 (ar-ar)", "STS17 (en-ar)", "STS17 (en-de)", "STS17 (en-tr)", "STS17 (es-en)", "STS17 (es-es)", "STS17 (fr-en)", "STS17 (it-en)", "STS17 (ko-ko)", "STS17 (nl-en)", "STS22 (ar)", "STS22 (de)", "STS22 (de-en)", "STS22 (de-fr)", "STS22 (de-pl)", "STS22 (es)", "STS22 (es-en)", "STS22 (es-it)", "STS22 (fr)", "STS22 (fr-pl)", "STS22 (it)", "STS22 (pl)", "STS22 (pl-en)", "STS22 (ru)", "STS22 (tr)", "STS22 (zh-en)", "STSBenchmark",]
|
|
|
|
| 292 |
|
| 293 |
TASK_LIST_SUMMARIZATION = ["SummEval",]
|
| 294 |
|
| 295 |
+
TASK_LIST_SUMMARIZATION_FR = ["SummEvalFr"]
|
| 296 |
+
|
| 297 |
TASK_LIST_EN = TASK_LIST_CLASSIFICATION + TASK_LIST_CLUSTERING + TASK_LIST_PAIR_CLASSIFICATION + TASK_LIST_RERANKING + TASK_LIST_RETRIEVAL + TASK_LIST_STS + TASK_LIST_SUMMARIZATION
|
| 298 |
+
TASK_LIST_FR = TASK_LIST_CLASSIFICATION_FR + TASK_LIST_CLUSTERING_FR + TASK_LIST_PAIR_CLASSIFICATION_FR + TASK_LIST_RERANKING_FR + TASK_LIST_RETRIEVAL_FR + TASK_LIST_STS_FR + TASK_LIST_SUMMARIZATION_FR
|
| 299 |
TASK_LIST_PL = TASK_LIST_CLASSIFICATION_PL + TASK_LIST_CLUSTERING_PL + TASK_LIST_PAIR_CLASSIFICATION_PL + TASK_LIST_RETRIEVAL_PL + TASK_LIST_STS_PL
|
| 300 |
TASK_LIST_ZH = TASK_LIST_CLASSIFICATION_ZH + TASK_LIST_CLUSTERING_ZH + TASK_LIST_PAIR_CLASSIFICATION_ZH + TASK_LIST_RERANKING_ZH + TASK_LIST_RETRIEVAL_ZH + TASK_LIST_STS_ZH
|
| 301 |
|
|
|
|
| 320 |
|
| 321 |
# Models without metadata, thus we cannot fetch their results naturally
|
| 322 |
EXTERNAL_MODELS = [
|
| 323 |
+
"Baichuan-text-embedding",
|
| 324 |
+
"Cohere-embed-multilingual-v3.0",
|
| 325 |
+
"Cohere-embed-multilingual-light-v3.0",
|
| 326 |
+
"DanskBERT",
|
| 327 |
+
"LASER2",
|
| 328 |
+
"LaBSE",
|
| 329 |
+
"OpenSearch-text-hybrid",
|
| 330 |
"all-MiniLM-L12-v2",
|
| 331 |
"all-MiniLM-L6-v2",
|
| 332 |
"all-mpnet-base-v2",
|
| 333 |
"allenai-specter",
|
| 334 |
+
"bert-base-10lang-cased",
|
| 335 |
+
"bert-base-15lang-cased",
|
| 336 |
+
"bert-base-25lang-cased",
|
| 337 |
+
"bert-base-multilingual-cased",
|
| 338 |
+
"bert-base-multilingual-uncased",
|
| 339 |
"bert-base-swedish-cased",
|
| 340 |
"bert-base-uncased",
|
| 341 |
"bge-base-zh-v1.5",
|
|
|
|
| 347 |
"dfm-encoder-large-v1",
|
| 348 |
"dfm-sentence-encoder-large-1",
|
| 349 |
"distiluse-base-multilingual-cased-v2",
|
|
|
|
| 350 |
"e5-base",
|
| 351 |
"e5-large",
|
| 352 |
+
"e5-mistral-7b-instruct",
|
| 353 |
+
"e5-small",
|
| 354 |
"electra-small-nordic",
|
| 355 |
"electra-small-swedish-cased-discriminator",
|
| 356 |
+
"flaubert_base_cased",
|
| 357 |
+
"flaubert_base_uncased",
|
| 358 |
+
"flaubert_large_cased",
|
| 359 |
"gbert-base",
|
| 360 |
"gbert-large",
|
| 361 |
"gelectra-base",
|
| 362 |
"gelectra-large",
|
|
|
|
| 363 |
"glove.6B.300d",
|
| 364 |
+
"gottbert-base",
|
| 365 |
"gtr-t5-base",
|
| 366 |
"gtr-t5-large",
|
| 367 |
"gtr-t5-xl",
|
|
|
|
| 369 |
"herbert-base-retrieval-v2",
|
| 370 |
"komninos",
|
| 371 |
"luotuo-bert-medium",
|
|
|
|
|
|
|
| 372 |
"m3e-base",
|
| 373 |
+
"m3e-large",
|
| 374 |
+
"mistral-embed",
|
| 375 |
"msmarco-bert-co-condensor",
|
| 376 |
+
"multi-qa-MiniLM-L6-cos-v1",
|
| 377 |
"multilingual-e5-base",
|
| 378 |
"multilingual-e5-large",
|
| 379 |
"multilingual-e5-small",
|
|
|
|
| 388 |
"paraphrase-multilingual-MiniLM-L12-v2",
|
| 389 |
"paraphrase-multilingual-mpnet-base-v2",
|
| 390 |
"sentence-bert-swedish-cased",
|
| 391 |
+
"sentence-camembert-base",
|
| 392 |
+
"sentence-camembert-large",
|
| 393 |
+
"sentence-croissant-llm-base",
|
| 394 |
"sentence-t5-base",
|
| 395 |
"sentence-t5-large",
|
| 396 |
"sentence-t5-xl",
|
| 397 |
"sentence-t5-xxl",
|
| 398 |
+
"silver-retriever-base-v1",
|
| 399 |
"sup-simcse-bert-base-uncased",
|
| 400 |
"st-polish-paraphrase-from-distilroberta",
|
| 401 |
+
"st-polish-paraphrase-from-mpnet",
|
| 402 |
"text2vec-base-chinese",
|
| 403 |
+
"text2vec-base-multilingual",
|
| 404 |
"text2vec-large-chinese",
|
| 405 |
"text-embedding-3-small",
|
| 406 |
"text-embedding-3-large",
|
|
|
|
| 416 |
"text-search-curie-001",
|
| 417 |
"text-search-davinci-001",
|
| 418 |
"titan-embed-text-v1",
|
| 419 |
+
"udever-bloom-1b1",
|
| 420 |
+
"udever-bloom-560m",
|
| 421 |
+
"universal-sentence-encoder-multilingual-3",
|
| 422 |
+
"universal-sentence-encoder-multilingual-large-3",
|
| 423 |
"unsup-simcse-bert-base-uncased",
|
| 424 |
"use-cmlm-multilingual",
|
| 425 |
+
"voyage-2",
|
| 426 |
+
"voyage-code-2",
|
| 427 |
"voyage-lite-01-instruct",
|
| 428 |
+
"voyage-lite-02-instruct",
|
| 429 |
"xlm-roberta-base",
|
| 430 |
+
"xlm-roberta-large",
|
| 431 |
]
|
| 432 |
|
| 433 |
EXTERNAL_MODEL_TO_LINK = {
|
| 434 |
+
"Cohere-embed-multilingual-v3.0": "https://huggingface.co/Cohere/Cohere-embed-multilingual-v3.0",
|
| 435 |
+
"Cohere-embed-multilingual-light-v3.0": "https://huggingface.co/Cohere/Cohere-embed-multilingual-light-v3.0",
|
| 436 |
"allenai-specter": "https://huggingface.co/sentence-transformers/allenai-specter",
|
| 437 |
"allenai-specter": "https://huggingface.co/sentence-transformers/allenai-specter",
|
| 438 |
"all-MiniLM-L12-v2": "https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2",
|
| 439 |
"all-MiniLM-L6-v2": "https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2",
|
| 440 |
"all-mpnet-base-v2": "https://huggingface.co/sentence-transformers/all-mpnet-base-v2",
|
| 441 |
"Baichuan-text-embedding": "https://platform.baichuan-ai.com/docs/text-Embedding",
|
| 442 |
+
"bert-base-10lang-cased": "https://huggingface.co/Geotrend/bert-base-10lang-cased",
|
| 443 |
+
"bert-base-15lang-cased": "https://huggingface.co/Geotrend/bert-base-15lang-cased",
|
| 444 |
+
"bert-base-25lang-cased": "https://huggingface.co/Geotrend/bert-base-25lang-cased",
|
| 445 |
+
"bert-base-multilingual-cased": "https://huggingface.co/google-bert/bert-base-multilingual-cased",
|
| 446 |
+
"bert-base-multilingual-uncased": "https://huggingface.co/google-bert/bert-base-multilingual-uncased",
|
| 447 |
"bert-base-swedish-cased": "https://huggingface.co/KB/bert-base-swedish-cased",
|
| 448 |
"bert-base-uncased": "https://huggingface.co/bert-base-uncased",
|
| 449 |
"bge-base-zh-v1.5": "https://huggingface.co/BAAI/bge-base-zh-v1.5",
|
| 450 |
"bge-large-zh-v1.5": "https://huggingface.co/BAAI/bge-large-zh-v1.5",
|
| 451 |
"bge-large-zh-noinstruct": "https://huggingface.co/BAAI/bge-large-zh-noinstruct",
|
| 452 |
"bge-small-zh-v1.5": "https://huggingface.co/BAAI/bge-small-zh-v1.5",
|
| 453 |
+
"camembert-base": "https://huggingface.co/almanach/camembert-base",
|
| 454 |
+
"camembert-large": "https://huggingface.co/almanach/camembert-large",
|
| 455 |
"contriever-base-msmarco": "https://huggingface.co/nthakur/contriever-base-msmarco",
|
| 456 |
"cross-en-de-roberta-sentence-transformer": "https://huggingface.co/T-Systems-onsite/cross-en-de-roberta-sentence-transformer",
|
| 457 |
"DanskBERT": "https://huggingface.co/vesteinn/DanskBERT",
|
| 458 |
+
"distilbert-base-25lang-cased": "https://huggingface.co/Geotrend/distilbert-base-25lang-cased",
|
| 459 |
+
"distilbert-base-en-fr-cased": "https://huggingface.co/Geotrend/distilbert-base-en-fr-cased",
|
| 460 |
+
"distilbert-base-en-fr-es-pt-it-cased": "https://huggingface.co/Geotrend/distilbert-base-en-fr-es-pt-it-cased",
|
| 461 |
+
"distilbert-base-fr-cased": "https://huggingface.co/Geotrend/distilbert-base-fr-cased",
|
| 462 |
+
"distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased",
|
| 463 |
"distiluse-base-multilingual-cased-v2": "https://huggingface.co/sentence-transformers/distiluse-base-multilingual-cased-v2",
|
| 464 |
"dfm-encoder-large-v1": "https://huggingface.co/chcaa/dfm-encoder-large-v1",
|
| 465 |
"dfm-sentence-encoder-large-1": "https://huggingface.co/chcaa/dfm-encoder-large-v1",
|
| 466 |
"e5-base": "https://huggingface.co/intfloat/e5-base",
|
| 467 |
"e5-large": "https://huggingface.co/intfloat/e5-large",
|
| 468 |
+
"e5-mistral-7b-instruct": "https://huggingface.co/intfloat/e5-mistral-7b-instruct",
|
| 469 |
"e5-small": "https://huggingface.co/intfloat/e5-small",
|
| 470 |
"electra-small-nordic": "https://huggingface.co/jonfd/electra-small-nordic",
|
| 471 |
"electra-small-swedish-cased-discriminator": "https://huggingface.co/KBLab/electra-small-swedish-cased-discriminator",
|
| 472 |
+
"flaubert_base_cased": "https://huggingface.co/flaubert/flaubert_base_cased",
|
| 473 |
+
"flaubert_base_uncased": "https://huggingface.co/flaubert/flaubert_base_uncased",
|
| 474 |
+
"flaubert_large_cased": "https://huggingface.co/flaubert/flaubert_large_cased",
|
| 475 |
"gbert-base": "https://huggingface.co/deepset/gbert-base",
|
| 476 |
"gbert-large": "https://huggingface.co/deepset/gbert-large",
|
| 477 |
"gelectra-base": "https://huggingface.co/deepset/gelectra-base",
|
|
|
|
| 489 |
"LaBSE": "https://huggingface.co/sentence-transformers/LaBSE",
|
| 490 |
"m3e-base": "https://huggingface.co/moka-ai/m3e-base",
|
| 491 |
"m3e-large": "https://huggingface.co/moka-ai/m3e-large",
|
| 492 |
+
"mistral-embed": "https://docs.mistral.ai/guides/embeddings",
|
| 493 |
"msmarco-bert-co-condensor": "https://huggingface.co/sentence-transformers/msmarco-bert-co-condensor",
|
| 494 |
+
"multi-qa-MiniLM-L6-cos-v1": "https://huggingface.co/sentence-transformers/multi-qa-MiniLM-L6-cos-v1",
|
| 495 |
"multilingual-e5-base": "https://huggingface.co/intfloat/multilingual-e5-base",
|
| 496 |
"multilingual-e5-large": "https://huggingface.co/intfloat/multilingual-e5-large",
|
| 497 |
"multilingual-e5-small": "https://huggingface.co/intfloat/multilingual-e5-small",
|
|
|
|
| 503 |
"nomic-embed-text-v1.5-512": "https://huggingface.co/nomic-ai/nomic-embed-text-v1.5",
|
| 504 |
"norbert3-base": "https://huggingface.co/ltg/norbert3-base",
|
| 505 |
"norbert3-large": "https://huggingface.co/ltg/norbert3-large",
|
| 506 |
+
"OpenSearch-text-hybrid": "https://help.aliyun.com/zh/open-search/vector-search-edition/hybrid-retrieval",
|
| 507 |
"paraphrase-multilingual-mpnet-base-v2": "https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2",
|
| 508 |
"paraphrase-multilingual-MiniLM-L12-v2": "https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2",
|
| 509 |
+
"sentence-camembert-base": "https://huggingface.co/dangvantuan/sentence-camembert-base",
|
| 510 |
+
"sentence-camembert-large": "https://huggingface.co/dangvantuan/sentence-camembert-large",
|
| 511 |
+
"sentence-croissant-llm-base": "https://huggingface.co/Wissam42/sentence-croissant-llm-base",
|
| 512 |
"sentence-bert-swedish-cased": "https://huggingface.co/KBLab/sentence-bert-swedish-cased",
|
| 513 |
"sentence-t5-base": "https://huggingface.co/sentence-transformers/sentence-t5-base",
|
| 514 |
"sentence-t5-large": "https://huggingface.co/sentence-transformers/sentence-t5-large",
|
| 515 |
"sentence-t5-xl": "https://huggingface.co/sentence-transformers/sentence-t5-xl",
|
| 516 |
"sentence-t5-xxl": "https://huggingface.co/sentence-transformers/sentence-t5-xxl",
|
| 517 |
+
"silver-retriever-base-v1": "https://huggingface.co/ipipan/silver-retriever-base-v1",
|
| 518 |
"sup-simcse-bert-base-uncased": "https://huggingface.co/princeton-nlp/sup-simcse-bert-base-uncased",
|
| 519 |
"st-polish-paraphrase-from-distilroberta": "https://huggingface.co/sdadas/st-polish-paraphrase-from-distilroberta",
|
| 520 |
"st-polish-paraphrase-from-mpnet": "https://huggingface.co/sdadas/st-polish-paraphrase-from-mpnet",
|
|
|
|
| 535 |
"text-search-babbage-001": "https://openai.com/blog/introducing-text-and-code-embeddings",
|
| 536 |
"text-search-davinci-001": "https://openai.com/blog/introducing-text-and-code-embeddings",
|
| 537 |
"titan-embed-text-v1": "https://docs.aws.amazon.com/bedrock/latest/userguide/embeddings.html",
|
| 538 |
+
"udever-bloom-1b1": "https://huggingface.co/izhx/udever-bloom-1b1",
|
| 539 |
+
"udever-bloom-560m": "https://huggingface.co/izhx/udever-bloom-560m",
|
| 540 |
+
"universal-sentence-encoder-multilingual-3": "https://huggingface.co/vprelovac/universal-sentence-encoder-multilingual-3",
|
| 541 |
+
"universal-sentence-encoder-multilingual-large-3": "https://huggingface.co/vprelovac/universal-sentence-encoder-multilingual-large-3",
|
| 542 |
"unsup-simcse-bert-base-uncased": "https://huggingface.co/princeton-nlp/unsup-simcse-bert-base-uncased",
|
| 543 |
"use-cmlm-multilingual": "https://huggingface.co/sentence-transformers/use-cmlm-multilingual",
|
| 544 |
+
"voyage-2": "https://docs.voyageai.com/embeddings/",
|
| 545 |
+
"voyage-code-2": "https://docs.voyageai.com/embeddings/",
|
| 546 |
"voyage-lite-01-instruct": "https://docs.voyageai.com/embeddings/",
|
| 547 |
"voyage-lite-02-instruct": "https://docs.voyageai.com/embeddings/",
|
| 548 |
"xlm-roberta-base": "https://huggingface.co/xlm-roberta-base",
|
|
|
|
| 550 |
}
|
| 551 |
|
| 552 |
EXTERNAL_MODEL_TO_DIM = {
|
| 553 |
+
"Cohere-embed-multilingual-v3.0": 1024,
|
| 554 |
+
"Cohere-embed-multilingual-light-v3.0": 384,
|
| 555 |
"all-MiniLM-L12-v2": 384,
|
| 556 |
"all-MiniLM-L6-v2": 384,
|
| 557 |
"all-mpnet-base-v2": 768,
|
| 558 |
"allenai-specter": 768,
|
| 559 |
"Baichuan-text-embedding": 1024,
|
| 560 |
+
"bert-base-10lang-cased": 768,
|
| 561 |
+
"bert-base-15lang-cased": 768,
|
| 562 |
+
"bert-base-25lang-cased": 768,
|
| 563 |
+
"bert-base-multilingual-cased": 768,
|
| 564 |
+
"bert-base-multilingual-uncased": 768,
|
| 565 |
"bert-base-swedish-cased": 768,
|
| 566 |
"bert-base-uncased": 768,
|
| 567 |
"bge-base-zh-v1.5": 768,
|
| 568 |
"bge-large-zh-v1.5": 1024,
|
| 569 |
"bge-large-zh-noinstruct": 1024,
|
| 570 |
"bge-small-zh-v1.5": 512,
|
| 571 |
+
"camembert-base": 512,
|
| 572 |
+
"camembert-large": 768,
|
| 573 |
"contriever-base-msmarco": 768,
|
| 574 |
"cross-en-de-roberta-sentence-transformer": 768,
|
| 575 |
"DanskBERT": 768,
|
| 576 |
+
"distilbert-base-25lang-cased": 768,
|
| 577 |
+
"distilbert-base-en-fr-cased": 768,
|
| 578 |
+
"distilbert-base-en-fr-es-pt-it-cased": 768,
|
| 579 |
+
"distilbert-base-fr-cased": 768,
|
| 580 |
+
"distilbert-base-uncased": 768,
|
| 581 |
"distiluse-base-multilingual-cased-v2": 512,
|
| 582 |
"dfm-encoder-large-v1": 1024,
|
| 583 |
"dfm-sentence-encoder-large-1": 1024,
|
| 584 |
"e5-base": 768,
|
| 585 |
+
"e5-large": 1024,
|
| 586 |
+
"e5-mistral-7b-instruct": 4096,
|
| 587 |
"e5-small": 384,
|
|
|
|
| 588 |
"electra-small-nordic": 256,
|
| 589 |
"electra-small-swedish-cased-discriminator": 256,
|
| 590 |
+
"flaubert_base_cased": 768,
|
| 591 |
+
"flaubert_base_uncased": 768,
|
| 592 |
+
"flaubert_large_cased": 1024,
|
| 593 |
"luotuo-bert-medium": 768,
|
| 594 |
"LASER2": 1024,
|
| 595 |
"LaBSE": 768,
|
|
|
|
| 607 |
"komninos": 300,
|
| 608 |
"m3e-base": 768,
|
| 609 |
"m3e-large": 768,
|
| 610 |
+
"mistral-embed": 1024,
|
| 611 |
"msmarco-bert-co-condensor": 768,
|
| 612 |
+
"multi-qa-MiniLM-L6-cos-v1": 384,
|
| 613 |
"multilingual-e5-base": 768,
|
| 614 |
"multilingual-e5-small": 384,
|
| 615 |
"multilingual-e5-large": 1024,
|
|
|
|
| 621 |
"nomic-embed-text-v1.5-512": 512,
|
| 622 |
"norbert3-base": 768,
|
| 623 |
"norbert3-large": 1024,
|
| 624 |
+
"OpenSearch-text-hybrid": 1792,
|
| 625 |
"paraphrase-multilingual-MiniLM-L12-v2": 384,
|
| 626 |
"paraphrase-multilingual-mpnet-base-v2": 768,
|
| 627 |
+
"sentence-camembert-base": 768,
|
| 628 |
+
"sentence-camembert-large": 1024,
|
| 629 |
+
"sentence-croissant-llm-base": 2048,
|
| 630 |
"sentence-bert-swedish-cased": 768,
|
| 631 |
"sentence-t5-base": 768,
|
| 632 |
"sentence-t5-large": 768,
|
| 633 |
"sentence-t5-xl": 768,
|
| 634 |
"sentence-t5-xxl": 768,
|
| 635 |
+
"silver-retriever-base-v1": 768,
|
| 636 |
"sup-simcse-bert-base-uncased": 768,
|
| 637 |
"st-polish-paraphrase-from-distilroberta": 768,
|
| 638 |
"st-polish-paraphrase-from-mpnet": 768,
|
|
|
|
| 653 |
"text-search-curie-001": 4096,
|
| 654 |
"text-search-davinci-001": 12288,
|
| 655 |
"titan-embed-text-v1": 1536,
|
| 656 |
+
"udever-bloom-1b1": 1536,
|
| 657 |
+
"udever-bloom-560m": 1024,
|
| 658 |
+
"universal-sentence-encoder-multilingual-3": 512,
|
| 659 |
+
"universal-sentence-encoder-multilingual-large-3": 512,
|
| 660 |
"unsup-simcse-bert-base-uncased": 768,
|
| 661 |
"use-cmlm-multilingual": 768,
|
| 662 |
+
"voyage-2": 1024,
|
| 663 |
+
"voyage-code-2": 1536,
|
| 664 |
"voyage-lite-01-instruct": 1024,
|
| 665 |
"voyage-lite-02-instruct": 1024,
|
| 666 |
"xlm-roberta-base": 768,
|
|
|
|
| 668 |
}
|
| 669 |
|
| 670 |
EXTERNAL_MODEL_TO_SEQLEN = {
|
| 671 |
+
"Cohere-embed-multilingual-v3.0": 512,
|
| 672 |
+
"Cohere-embed-multilingual-light-v3.0": 512,
|
| 673 |
"all-MiniLM-L12-v2": 512,
|
| 674 |
"all-MiniLM-L6-v2": 512,
|
| 675 |
"all-mpnet-base-v2": 514,
|
| 676 |
"allenai-specter": 512,
|
| 677 |
"Baichuan-text-embedding": 512,
|
| 678 |
+
"bert-base-10lang-cased": 512,
|
| 679 |
+
"bert-base-15lang-cased": 512,
|
| 680 |
+
"bert-base-25lang-cased": 512,
|
| 681 |
+
"bert-base-multilingual-cased": 512,
|
| 682 |
+
"bert-base-multilingual-uncased": 512,
|
| 683 |
"bert-base-swedish-cased": 512,
|
| 684 |
"bert-base-uncased": 512,
|
| 685 |
"bge-base-zh-v1.5": 512,
|
| 686 |
"bge-large-zh-v1.5": 512,
|
| 687 |
"bge-large-zh-noinstruct": 512,
|
| 688 |
+
"bge-small-zh-v1.5": 512,
|
| 689 |
+
"camembert-base": 512,
|
| 690 |
+
"camembert-large": 512,
|
| 691 |
"contriever-base-msmarco": 512,
|
| 692 |
"cross-en-de-roberta-sentence-transformer": 514,
|
| 693 |
+
"distilbert-base-25lang-cased": 512,
|
| 694 |
+
"distilbert-base-en-fr-cased": 512,
|
| 695 |
+
"distilbert-base-en-fr-es-pt-it-cased": 512,
|
| 696 |
+
"distilbert-base-fr-cased": 512,
|
| 697 |
+
"distilbert-base-uncased": 512,
|
| 698 |
"DanskBERT": 514,
|
| 699 |
"dfm-encoder-large-v1": 512,
|
| 700 |
"dfm-sentence-encoder-large-1": 512,
|
| 701 |
"distiluse-base-multilingual-cased-v2": 512,
|
| 702 |
"e5-base": 512,
|
| 703 |
"e5-large": 512,
|
| 704 |
+
"e5-mistral-7b-instruct": 32768,
|
| 705 |
"e5-small": 512,
|
| 706 |
"electra-small-nordic": 512,
|
| 707 |
"electra-small-swedish-cased-discriminator": 512,
|
| 708 |
+
"flaubert_base_cased": 512,
|
| 709 |
+
"flaubert_base_uncased": 512,
|
| 710 |
+
"flaubert_large_cased": 512,
|
| 711 |
"gbert-base": 512,
|
| 712 |
"gbert-large": 512,
|
| 713 |
"gelectra-base": 512,
|
|
|
|
| 724 |
"LASER2": "N/A",
|
| 725 |
"LaBSE": 512,
|
| 726 |
"m3e-base": 512,
|
| 727 |
+
"m3e-large": 512,
|
| 728 |
+
# "mistral-embed": "?",
|
| 729 |
"msmarco-bert-co-condensor": 512,
|
| 730 |
+
"multi-qa-MiniLM-L6-cos-v1": 512,
|
| 731 |
"multilingual-e5-base": 514,
|
| 732 |
"multilingual-e5-large": 514,
|
| 733 |
"multilingual-e5-small": 512,
|
|
|
|
| 739 |
"nomic-embed-text-v1.5-512": 8192,
|
| 740 |
"norbert3-base": 512,
|
| 741 |
"norbert3-large": 512,
|
| 742 |
+
"OpenSearch-text-hybrid": 512,
|
| 743 |
"paraphrase-multilingual-MiniLM-L12-v2": 512,
|
| 744 |
"paraphrase-multilingual-mpnet-base-v2": 514,
|
| 745 |
+
"sentence-camembert-base": 512,
|
| 746 |
+
"sentence-camembert-large": 512,
|
| 747 |
+
"sentence-croissant-llm-base": 2048,
|
| 748 |
"sentence-bert-swedish-cased": 512,
|
| 749 |
"sentence-t5-base": 512,
|
| 750 |
"sentence-t5-large": 512,
|
| 751 |
"sentence-t5-xl": 512,
|
| 752 |
"sentence-t5-xxl": 512,
|
| 753 |
+
"silver-retriever-base-v1": 514,
|
| 754 |
"sup-simcse-bert-base-uncased": 512,
|
| 755 |
"st-polish-paraphrase-from-distilroberta": 514,
|
| 756 |
"st-polish-paraphrase-from-mpnet": 514,
|
|
|
|
| 771 |
"text-search-curie-001": 2046,
|
| 772 |
"text-search-davinci-001": 2046,
|
| 773 |
"titan-embed-text-v1": 8000,
|
| 774 |
+
"udever-bloom-1b1": 2048,
|
| 775 |
+
"udever-bloom-560m": 2048,
|
| 776 |
+
"universal-sentence-encoder-multilingual-3": 512,
|
| 777 |
+
"universal-sentence-encoder-multilingual-large-3": 512,
|
| 778 |
"use-cmlm-multilingual": 512,
|
| 779 |
"unsup-simcse-bert-base-uncased": 512,
|
| 780 |
+
"voyage-2": 1024,
|
| 781 |
+
"voyage-code-2": 16000,
|
| 782 |
"voyage-lite-01-instruct": 4000,
|
| 783 |
"voyage-lite-02-instruct": 4000,
|
| 784 |
"xlm-roberta-base": 514,
|
|
|
|
| 790 |
"all-MiniLM-L12-v2": 0.13,
|
| 791 |
"all-MiniLM-L6-v2": 0.09,
|
| 792 |
"all-mpnet-base-v2": 0.44,
|
| 793 |
+
"bert-base-10lang-cased": 0.61,
|
| 794 |
+
"bert-base-15lang-cased": 0.61,
|
| 795 |
+
"bert-base-25lang-cased": 0.61,
|
| 796 |
+
"bert-base-multilingual-cased": 0.71,
|
| 797 |
+
"bert-base-multilingual-uncased": 0.67,
|
| 798 |
"bert-base-uncased": 0.44,
|
| 799 |
"bert-base-swedish-cased": 0.50,
|
| 800 |
"bge-base-zh-v1.5": 0.41,
|
| 801 |
"bge-large-zh-v1.5": 1.30,
|
| 802 |
"bge-large-zh-noinstruct": 1.30,
|
| 803 |
+
"bge-small-zh-v1.5": 0.10,
|
| 804 |
+
"camembert-base": 0.45,
|
| 805 |
+
"camembert-large": 1.35,
|
| 806 |
"cross-en-de-roberta-sentence-transformer": 1.11,
|
| 807 |
"contriever-base-msmarco": 0.44,
|
| 808 |
+
"distilbert-base-25lang-cased": 0.44,
|
| 809 |
+
"distilbert-base-en-fr-cased": 0.44,
|
| 810 |
+
"distilbert-base-en-fr-es-pt-it-cased": 0.44,
|
| 811 |
+
"distilbert-base-fr-cased": 0.44,
|
| 812 |
+
"distilbert-base-uncased": 0.44,
|
| 813 |
"DanskBERT": 0.50,
|
| 814 |
"distiluse-base-multilingual-cased-v2": 0.54,
|
| 815 |
"dfm-encoder-large-v1": 1.42,
|
| 816 |
"dfm-sentence-encoder-large-1": 1.63,
|
| 817 |
"e5-base": 0.44,
|
|
|
|
| 818 |
"e5-large": 1.34,
|
| 819 |
+
"e5-mistral-7b-instruct": 14.22,
|
| 820 |
+
"e5-small": 0.13,
|
| 821 |
"electra-small-nordic": 0.09,
|
| 822 |
"electra-small-swedish-cased-discriminator": 0.06,
|
| 823 |
+
"flaubert_base_cased": 0.55,
|
| 824 |
+
"flaubert_base_uncased": 0.55,
|
| 825 |
+
"flaubert_large_cased": 1.49,
|
| 826 |
"gbert-base": 0.44,
|
| 827 |
"gbert-large": 1.35,
|
| 828 |
"gelectra-base": 0.44,
|
|
|
|
| 841 |
"m3e-base": 0.41,
|
| 842 |
"m3e-large": 0.41,
|
| 843 |
"msmarco-bert-co-condensor": 0.44,
|
| 844 |
+
"multi-qa-MiniLM-L6-cos-v1": 0.09,
|
| 845 |
"multilingual-e5-base": 1.11,
|
| 846 |
"multilingual-e5-small": 0.47,
|
| 847 |
"multilingual-e5-large": 2.24,
|
|
|
|
| 855 |
"norbert3-large": 1.47,
|
| 856 |
"paraphrase-multilingual-mpnet-base-v2": 1.11,
|
| 857 |
"paraphrase-multilingual-MiniLM-L12-v2": 0.47,
|
| 858 |
+
"sentence-camembert-base": 0.44,
|
| 859 |
+
"sentence-camembert-large": 1.35,
|
| 860 |
+
"sentence-croissant-llm-base": 5.12,
|
| 861 |
"sentence-bert-swedish-cased": 0.50,
|
| 862 |
"sentence-t5-base": 0.22,
|
| 863 |
"sentence-t5-large": 0.67,
|
| 864 |
"sentence-t5-xl": 2.48,
|
| 865 |
"sentence-t5-xxl": 9.73,
|
| 866 |
+
"silver-retriever-base-v1": 0.50,
|
| 867 |
"sup-simcse-bert-base-uncased": 0.44,
|
| 868 |
"st-polish-paraphrase-from-distilroberta": 0.50,
|
| 869 |
"st-polish-paraphrase-from-mpnet": 0.50,
|
|
|
|
| 990 |
"atian-chapters/Chapters-SFR-Embedding-Mistral", # Copy
|
| 991 |
"rlsChapters/Chapters-SFR-Embedding-Mistral", # Copy
|
| 992 |
"TitanML/jina-v2-base-en-embed", # Copy
|
| 993 |
+
"MaziyarPanahi/GritLM-8x7B-GGUF", # GGUF variant
|
| 994 |
}
|
| 995 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 996 |
def add_lang(examples):
|
| 997 |
if not(examples["eval_language"]):
|
| 998 |
examples["mteb_dataset_name_with_lang"] = examples["mteb_dataset_name"]
|
|
|
|
| 1000 |
examples["mteb_dataset_name_with_lang"] = examples["mteb_dataset_name"] + f' ({examples["eval_language"]})'
|
| 1001 |
return examples
|
| 1002 |
|
| 1003 |
+
def norm(names): return set([name.split(" ")[0] for name in names])
|
| 1004 |
+
|
| 1005 |
def add_task(examples):
|
| 1006 |
# Could be added to the dataset loading script instead
|
| 1007 |
+
if examples["mteb_dataset_name"] in norm(TASK_LIST_CLASSIFICATION + TASK_LIST_CLASSIFICATION_DA + TASK_LIST_CLASSIFICATION_FR + TASK_LIST_CLASSIFICATION_NB + TASK_LIST_CLASSIFICATION_PL + TASK_LIST_CLASSIFICATION_SV + TASK_LIST_CLASSIFICATION_ZH):
|
| 1008 |
examples["mteb_task"] = "Classification"
|
| 1009 |
+
elif examples["mteb_dataset_name"] in norm(TASK_LIST_CLUSTERING + TASK_LIST_CLUSTERING_DE + TASK_LIST_CLUSTERING_FR + TASK_LIST_CLUSTERING_PL + TASK_LIST_CLUSTERING_ZH):
|
| 1010 |
examples["mteb_task"] = "Clustering"
|
| 1011 |
+
elif examples["mteb_dataset_name"] in norm(TASK_LIST_PAIR_CLASSIFICATION + TASK_LIST_PAIR_CLASSIFICATION_FR + TASK_LIST_PAIR_CLASSIFICATION_PL + TASK_LIST_PAIR_CLASSIFICATION_ZH):
|
| 1012 |
examples["mteb_task"] = "PairClassification"
|
| 1013 |
+
elif examples["mteb_dataset_name"] in norm(TASK_LIST_RERANKING + TASK_LIST_RERANKING_FR + TASK_LIST_RERANKING_ZH):
|
| 1014 |
examples["mteb_task"] = "Reranking"
|
| 1015 |
+
elif examples["mteb_dataset_name"] in norm(TASK_LIST_RETRIEVAL_NORM + TASK_LIST_RETRIEVAL_FR + TASK_LIST_RETRIEVAL_PL + TASK_LIST_RETRIEVAL_ZH):
|
| 1016 |
examples["mteb_task"] = "Retrieval"
|
| 1017 |
+
elif examples["mteb_dataset_name"] in norm(TASK_LIST_STS + TASK_LIST_STS_FR + TASK_LIST_STS_PL + TASK_LIST_STS_ZH):
|
| 1018 |
examples["mteb_task"] = "STS"
|
| 1019 |
+
elif examples["mteb_dataset_name"] in norm(TASK_LIST_SUMMARIZATION + TASK_LIST_SUMMARIZATION_FR):
|
| 1020 |
examples["mteb_task"] = "Summarization"
|
| 1021 |
+
elif examples["mteb_dataset_name"] in norm(TASK_LIST_BITEXT_MINING + TASK_LIST_BITEXT_MINING_OTHER):
|
| 1022 |
examples["mteb_task"] = "BitextMining"
|
| 1023 |
else:
|
| 1024 |
print("WARNING: Task not found for dataset", examples["mteb_dataset_name"])
|
| 1025 |
examples["mteb_task"] = "Unknown"
|
| 1026 |
return examples
|
| 1027 |
|
| 1028 |
+
if os.path.exists("EXTERNAL_MODEL_RESULTS.json"):
|
| 1029 |
+
with open("EXTERNAL_MODEL_RESULTS.json") as f:
|
| 1030 |
+
EXTERNAL_MODEL_RESULTS = json.load(f)
|
| 1031 |
+
# Update with models not contained
|
| 1032 |
+
models_to_run = []
|
| 1033 |
+
for model in EXTERNAL_MODELS:
|
| 1034 |
+
if model not in EXTERNAL_MODEL_RESULTS:
|
| 1035 |
+
models_to_run.append(model)
|
| 1036 |
+
EXTERNAL_MODEL_RESULTS[model] = {k: {v: []} for k, v in TASK_TO_METRIC.items()}
|
| 1037 |
+
else:
|
| 1038 |
+
EXTERNAL_MODEL_RESULTS = {model: {k: {v: []} for k, v in TASK_TO_METRIC.items()} for model in EXTERNAL_MODELS}
|
| 1039 |
+
models_to_run = EXTERNAL_MODELS
|
| 1040 |
+
|
| 1041 |
+
pbar = tqdm(models_to_run, desc="Fetching external model results")
|
| 1042 |
+
for model in pbar:
|
| 1043 |
+
pbar.set_description(f"Fetching external model results for {model!r}")
|
| 1044 |
+
ds = load_dataset("mteb/results", model, trust_remote_code=True)
|
| 1045 |
+
# For local debugging:
|
| 1046 |
+
#, download_mode='force_redownload', verification_mode="no_checks")
|
| 1047 |
+
ds = ds.map(add_lang)
|
| 1048 |
+
ds = ds.map(add_task)
|
| 1049 |
+
base_dict = {"Model": make_clickable_model(model, link=EXTERNAL_MODEL_TO_LINK.get(model, "https://huggingface.co/spaces/mteb/leaderboard"))}
|
| 1050 |
+
# For now only one metric per task - Could add more metrics lateron
|
| 1051 |
+
for task, metric in TASK_TO_METRIC.items():
|
| 1052 |
+
ds_dict = ds.filter(lambda x: (x["mteb_task"] == task) and (x["metric"] == metric))["test"].to_dict()
|
| 1053 |
+
ds_dict = {k: round(v, 2) for k, v in zip(ds_dict["mteb_dataset_name_with_lang"], ds_dict["score"])}
|
| 1054 |
+
EXTERNAL_MODEL_RESULTS[model][task][metric].append({**base_dict, **ds_dict})
|
| 1055 |
+
|
| 1056 |
+
# Save & cache EXTERNAL_MODEL_RESULTS
|
| 1057 |
+
with open("EXTERNAL_MODEL_RESULTS.json", "w") as f:
|
| 1058 |
+
json.dump(EXTERNAL_MODEL_RESULTS, f)
|
| 1059 |
|
| 1060 |
def get_dim_seq_size(model):
|
| 1061 |
filenames = [sib.rfilename for sib in model.siblings]
|
|
|
|
| 1326 |
|
| 1327 |
return DATA_OVERALL_ZH
|
| 1328 |
|
| 1329 |
+
def get_mteb_average_fr():
|
| 1330 |
+
global DATA_OVERALL_FR, DATA_CLASSIFICATION_FR, DATA_CLUSTERING_FR, DATA_PAIR_CLASSIFICATION_FR, DATA_RERANKING_FR, DATA_RETRIEVAL_FR, DATA_STS_FR, DATA_SUMMARIZATION_FR
|
| 1331 |
+
DATA_OVERALL_FR = get_mteb_data(
|
| 1332 |
+
tasks=[
|
| 1333 |
+
"Classification",
|
| 1334 |
+
"Clustering",
|
| 1335 |
+
"PairClassification",
|
| 1336 |
+
"Reranking",
|
| 1337 |
+
"Retrieval",
|
| 1338 |
+
"STS",
|
| 1339 |
+
"Summarization"
|
| 1340 |
+
],
|
| 1341 |
+
datasets=TASK_LIST_CLASSIFICATION_FR + TASK_LIST_CLUSTERING_FR + TASK_LIST_PAIR_CLASSIFICATION_FR + TASK_LIST_RERANKING_FR + TASK_LIST_RETRIEVAL_FR + TASK_LIST_STS_FR + TASK_LIST_SUMMARIZATION_FR,
|
| 1342 |
+
fillna=False,
|
| 1343 |
+
add_emb_dim=True,
|
| 1344 |
+
rank=False,
|
| 1345 |
+
)
|
| 1346 |
+
# Debugging:
|
| 1347 |
+
# DATA_OVERALL_FR.to_csv("overall.csv")
|
| 1348 |
+
|
| 1349 |
+
DATA_OVERALL_FR.insert(1, f"Average ({len(TASK_LIST_FR)} datasets)", DATA_OVERALL_FR[TASK_LIST_FR].mean(axis=1, skipna=False))
|
| 1350 |
+
DATA_OVERALL_FR.insert(2, f"Classification Average ({len(TASK_LIST_CLASSIFICATION_FR)} datasets)", DATA_OVERALL_FR[TASK_LIST_CLASSIFICATION_FR].mean(axis=1, skipna=False))
|
| 1351 |
+
DATA_OVERALL_FR.insert(3, f"Clustering Average ({len(TASK_LIST_CLUSTERING_FR)} datasets)", DATA_OVERALL_FR[TASK_LIST_CLUSTERING_FR].mean(axis=1, skipna=False))
|
| 1352 |
+
DATA_OVERALL_FR.insert(4, f"Pair Classification Average ({len(TASK_LIST_PAIR_CLASSIFICATION_FR)} datasets)", DATA_OVERALL_FR[TASK_LIST_PAIR_CLASSIFICATION_FR].mean(axis=1, skipna=False))
|
| 1353 |
+
DATA_OVERALL_FR.insert(5, f"Reranking Average ({len(TASK_LIST_RERANKING_FR)} datasets)", DATA_OVERALL_FR[TASK_LIST_RERANKING_FR].mean(axis=1, skipna=False))
|
| 1354 |
+
DATA_OVERALL_FR.insert(6, f"Retrieval Average ({len(TASK_LIST_RETRIEVAL_FR)} datasets)", DATA_OVERALL_FR[TASK_LIST_RETRIEVAL_FR].mean(axis=1, skipna=False))
|
| 1355 |
+
DATA_OVERALL_FR.insert(7, f"STS Average ({len(TASK_LIST_STS_FR)} datasets)", DATA_OVERALL_FR[TASK_LIST_STS_FR].mean(axis=1, skipna=False))
|
| 1356 |
+
DATA_OVERALL_FR.insert(8, f"Summarization Average ({len(TASK_LIST_SUMMARIZATION_FR)} dataset)", DATA_OVERALL_FR[TASK_LIST_SUMMARIZATION_FR].mean(axis=1, skipna=False))
|
| 1357 |
+
DATA_OVERALL_FR.sort_values(f"Average ({len(TASK_LIST_FR)} datasets)", ascending=False, inplace=True)
|
| 1358 |
+
# Start ranking from 1
|
| 1359 |
+
DATA_OVERALL_FR.insert(0, "Rank", list(range(1, len(DATA_OVERALL_FR) + 1)))
|
| 1360 |
+
DATA_OVERALL_FR = DATA_OVERALL_FR.round(2)
|
| 1361 |
+
|
| 1362 |
+
DATA_CLASSIFICATION_FR = add_rank(DATA_OVERALL_FR[["Model"] + TASK_LIST_CLASSIFICATION_FR])
|
| 1363 |
+
DATA_CLASSIFICATION_FR = DATA_CLASSIFICATION_FR[DATA_CLASSIFICATION_FR.iloc[:, 2:].ne("").any(axis=1)]
|
| 1364 |
+
|
| 1365 |
+
DATA_CLUSTERING_FR = add_rank(DATA_OVERALL_FR[["Model"] + TASK_LIST_CLUSTERING_FR])
|
| 1366 |
+
DATA_CLUSTERING_FR = DATA_CLUSTERING_FR[DATA_CLUSTERING_FR.iloc[:, 2:].ne("").any(axis=1)]
|
| 1367 |
+
|
| 1368 |
+
DATA_PAIR_CLASSIFICATION_FR = add_rank(DATA_OVERALL_FR[["Model"] + TASK_LIST_PAIR_CLASSIFICATION_FR])
|
| 1369 |
+
DATA_PAIR_CLASSIFICATION_FR = DATA_PAIR_CLASSIFICATION_FR[DATA_PAIR_CLASSIFICATION_FR.iloc[:, 2:].ne("").any(axis=1)]
|
| 1370 |
+
|
| 1371 |
+
DATA_RERANKING_FR = add_rank(DATA_OVERALL_FR[["Model"] + TASK_LIST_RERANKING_FR])
|
| 1372 |
+
DATA_RERANKING_FR = DATA_RERANKING_FR[DATA_RERANKING_FR.iloc[:, 2:].ne("").any(axis=1)]
|
| 1373 |
+
|
| 1374 |
+
DATA_RETRIEVAL_FR = add_rank(DATA_OVERALL_FR[["Model"] + TASK_LIST_RETRIEVAL_FR])
|
| 1375 |
+
DATA_RETRIEVAL_FR = DATA_RETRIEVAL_FR[DATA_RETRIEVAL_FR.iloc[:, 2:].ne("").any(axis=1)]
|
| 1376 |
+
|
| 1377 |
+
DATA_STS_FR = add_rank(DATA_OVERALL_FR[["Model"] + TASK_LIST_STS_FR])
|
| 1378 |
+
DATA_STS_FR = DATA_STS_FR[DATA_STS_FR.iloc[:, 2:].ne("").any(axis=1)]
|
| 1379 |
+
|
| 1380 |
+
DATA_SUMMARIZATION_FR = add_rank(DATA_OVERALL_FR[["Model"] + TASK_LIST_SUMMARIZATION_FR])
|
| 1381 |
+
DATA_SUMMARIZATION_FR = DATA_SUMMARIZATION_FR[DATA_SUMMARIZATION_FR.iloc[:, 1:].ne("").any(axis=1)]
|
| 1382 |
+
|
| 1383 |
+
# Fill NaN after averaging
|
| 1384 |
+
DATA_OVERALL_FR.fillna("", inplace=True)
|
| 1385 |
+
|
| 1386 |
+
DATA_OVERALL_FR = DATA_OVERALL_FR[["Rank", "Model", "Model Size (GB)", "Embedding Dimensions", "Max Tokens", f"Average ({len(TASK_LIST_FR)} datasets)", f"Classification Average ({len(TASK_LIST_CLASSIFICATION_FR)} datasets)", f"Clustering Average ({len(TASK_LIST_CLUSTERING_FR)} datasets)", f"Pair Classification Average ({len(TASK_LIST_PAIR_CLASSIFICATION_FR)} datasets)", f"Reranking Average ({len(TASK_LIST_RERANKING_FR)} datasets)", f"Retrieval Average ({len(TASK_LIST_RETRIEVAL_FR)} datasets)", f"STS Average ({len(TASK_LIST_STS_FR)} datasets)", f"Summarization Average ({len(TASK_LIST_SUMMARIZATION_FR)} dataset)"]]
|
| 1387 |
+
DATA_OVERALL_FR = DATA_OVERALL_FR[DATA_OVERALL_FR.iloc[:, 5:].ne("").any(axis=1)]
|
| 1388 |
+
|
| 1389 |
+
return DATA_OVERALL_FR
|
| 1390 |
+
|
| 1391 |
def get_mteb_average_pl():
|
| 1392 |
global DATA_OVERALL_PL, DATA_CLASSIFICATION_PL, DATA_CLUSTERING_PL, DATA_PAIR_CLASSIFICATION_PL, DATA_RETRIEVAL_PL, DATA_STS_PL
|
| 1393 |
DATA_OVERALL_PL = get_mteb_data(
|
|
|
|
| 1443 |
return DATA_OVERALL_PL
|
| 1444 |
|
| 1445 |
get_mteb_average()
|
| 1446 |
+
get_mteb_average_fr()
|
| 1447 |
get_mteb_average_pl()
|
| 1448 |
get_mteb_average_zh()
|
| 1449 |
DATA_BITEXT_MINING = get_mteb_data(["BitextMining"], [], TASK_LIST_BITEXT_MINING)
|
|
|
|
| 1465 |
DATA_BITEXT_MINING_OTHER,
|
| 1466 |
DATA_CLASSIFICATION_EN,
|
| 1467 |
DATA_CLASSIFICATION_DA,
|
| 1468 |
+
DATA_CLASSIFICATION_FR,
|
| 1469 |
DATA_CLASSIFICATION_NB,
|
| 1470 |
DATA_CLASSIFICATION_PL,
|
| 1471 |
DATA_CLASSIFICATION_SV,
|
|
|
|
| 1473 |
DATA_CLASSIFICATION_OTHER,
|
| 1474 |
DATA_CLUSTERING,
|
| 1475 |
DATA_CLUSTERING_DE,
|
| 1476 |
+
DATA_CLUSTERING_FR,
|
| 1477 |
DATA_CLUSTERING_PL,
|
| 1478 |
DATA_CLUSTERING_ZH,
|
| 1479 |
DATA_PAIR_CLASSIFICATION,
|
| 1480 |
+
DATA_PAIR_CLASSIFICATION_FR,
|
| 1481 |
DATA_PAIR_CLASSIFICATION_PL,
|
| 1482 |
DATA_PAIR_CLASSIFICATION_ZH,
|
| 1483 |
DATA_RERANKING,
|
| 1484 |
+
DATA_RERANKING_FR,
|
| 1485 |
DATA_RERANKING_ZH,
|
| 1486 |
DATA_RETRIEVAL,
|
| 1487 |
+
DATA_RETRIEVAL_FR,
|
| 1488 |
DATA_RETRIEVAL_PL,
|
| 1489 |
DATA_RETRIEVAL_ZH,
|
| 1490 |
DATA_STS_EN,
|
| 1491 |
+
DATA_STS_FR,
|
| 1492 |
DATA_STS_PL,
|
| 1493 |
DATA_STS_ZH,
|
| 1494 |
DATA_STS_OTHER,
|
| 1495 |
DATA_SUMMARIZATION,
|
| 1496 |
+
DATA_SUMMARIZATION_FR,
|
| 1497 |
]:
|
| 1498 |
# NUM_SCORES += d.iloc[:, 1:].apply(lambda x: sum([1 for y in x if isinstance(y, float) and not np.isnan(y)]), axis=1).sum()
|
| 1499 |
cols_to_ignore = 3 if "Average" in d.columns else 2
|
|
|
|
| 1568 |
)
|
| 1569 |
with gr.Row():
|
| 1570 |
data_run_overall_zh = gr.Button("Refresh")
|
| 1571 |
+
data_run_overall_zh.click(get_mteb_average_zh, inputs=None, outputs=data_overall_zh)
|
| 1572 |
+
with gr.TabItem("French"):
|
| 1573 |
+
with gr.Row():
|
| 1574 |
+
gr.Markdown("""
|
| 1575 |
+
**Overall MTEB French leaderboard (F-MTEB)** 🔮🇫🇷
|
| 1576 |
+
|
| 1577 |
+
- **Metric:** Various, refer to task tabs
|
| 1578 |
+
- **Languages:** French
|
| 1579 |
+
- **Credits:** [Lyon-NLP](https://github.com/Lyon-NLP): [Gabriel Sequeira](https://github.com/GabrielSequeira), [Imene Kerboua](https://github.com/imenelydiaker), [wissam-sib](https://github.com/wissam-sib), [Sunalwing](https://github.com/Sunalwing)
|
| 1580 |
+
""")
|
| 1581 |
+
with gr.Row():
|
| 1582 |
+
data_overall_fr = gr.components.Dataframe(
|
| 1583 |
+
DATA_OVERALL_FR,
|
| 1584 |
+
datatype=["number", "markdown"] + ["number"] * len(DATA_OVERALL_FR.columns),
|
| 1585 |
+
type="pandas",
|
| 1586 |
+
height=600,
|
| 1587 |
+
)
|
| 1588 |
+
with gr.Row():
|
| 1589 |
+
data_overall_fr = gr.Button("Refresh")
|
| 1590 |
+
data_overall_fr.click(get_mteb_average_fr, inputs=None, outputs=data_overall_fr)
|
| 1591 |
with gr.TabItem("Polish"):
|
| 1592 |
with gr.Row():
|
| 1593 |
gr.Markdown("""
|
|
|
|
| 1712 |
partial(get_mteb_data, tasks=["Classification"], datasets=TASK_LIST_CLASSIFICATION_DA),
|
| 1713 |
outputs=data_run_classification_da,
|
| 1714 |
)
|
| 1715 |
+
with gr.TabItem("French"):
|
| 1716 |
+
with gr.Row():
|
| 1717 |
+
gr.Markdown("""
|
| 1718 |
+
**Classification French Leaderboard** 💙🇫🇷
|
| 1719 |
+
|
| 1720 |
+
- **Metric:** [Accuracy](https://huggingface.co/spaces/evaluate-metric/accuracy)
|
| 1721 |
+
- **Languages:** French
|
| 1722 |
+
- **Credits:**
|
| 1723 |
+
""")
|
| 1724 |
+
with gr.Row():
|
| 1725 |
+
data_classification_fr = gr.components.Dataframe(
|
| 1726 |
+
DATA_CLASSIFICATION_FR,
|
| 1727 |
+
datatype=["number", "markdown"] + ["number"] * len(DATA_CLASSIFICATION_FR.columns),
|
| 1728 |
+
type="pandas",
|
| 1729 |
+
)
|
| 1730 |
+
with gr.Row():
|
| 1731 |
+
data_run_classification_fr = gr.Button("Refresh")
|
| 1732 |
+
data_run_classification_fr.click(
|
| 1733 |
+
partial(get_mteb_data, tasks=["Classification"], datasets=TASK_LIST_CLASSIFICATION_FR),
|
| 1734 |
+
outputs=data_run_classification_fr,
|
| 1735 |
+
)
|
| 1736 |
with gr.TabItem("Norwegian"):
|
| 1737 |
with gr.Row():
|
| 1738 |
gr.Markdown("""
|
|
|
|
| 1858 |
partial(get_mteb_data, tasks=["Clustering"], datasets=TASK_LIST_CLUSTERING_ZH),
|
| 1859 |
outputs=data_clustering_zh,
|
| 1860 |
)
|
| 1861 |
+
with gr.TabItem("French"):
|
| 1862 |
+
with gr.Row():
|
| 1863 |
+
gr.Markdown("""
|
| 1864 |
+
**Clustering French Leaderboard** ✨🇫🇷
|
| 1865 |
+
|
| 1866 |
+
- **Metric:** Validity Measure (v_measure)
|
| 1867 |
+
- **Languages:** French
|
| 1868 |
+
- **Credits:**
|
| 1869 |
+
""")
|
| 1870 |
+
with gr.Row():
|
| 1871 |
+
data_clustering_fr = gr.components.Dataframe(
|
| 1872 |
+
DATA_CLUSTERING_FR,
|
| 1873 |
+
datatype=["number", "markdown"] + ["number"] * len(DATA_CLUSTERING_FR.columns),
|
| 1874 |
+
type="pandas",
|
| 1875 |
+
)
|
| 1876 |
+
with gr.Row():
|
| 1877 |
+
data_run_clustering_fr = gr.Button("Refresh")
|
| 1878 |
+
data_run_clustering_fr.click(
|
| 1879 |
+
partial(get_mteb_data, tasks=["Clustering"], datasets=TASK_LIST_CLUSTERING_FR),
|
| 1880 |
+
outputs=data_clustering_fr,
|
| 1881 |
+
)
|
| 1882 |
with gr.TabItem("German"):
|
| 1883 |
with gr.Row():
|
| 1884 |
gr.Markdown("""
|
|
|
|
| 1963 |
partial(get_mteb_data, tasks=["PairClassification"], datasets=TASK_LIST_PAIR_CLASSIFICATION_ZH),
|
| 1964 |
outputs=data_pair_classification_zh,
|
| 1965 |
)
|
| 1966 |
+
with gr.TabItem("French"):
|
| 1967 |
+
with gr.Row():
|
| 1968 |
+
gr.Markdown("""
|
| 1969 |
+
**Pair Classification French Leaderboard** 🎭🇫🇷
|
| 1970 |
+
|
| 1971 |
+
- **Metric:** Average Precision based on Cosine Similarities (cos_sim_ap)
|
| 1972 |
+
- **Languages:** French
|
| 1973 |
+
- **Credits:**
|
| 1974 |
+
""")
|
| 1975 |
+
with gr.Row():
|
| 1976 |
+
data_pair_classification_fr = gr.components.Dataframe(
|
| 1977 |
+
DATA_PAIR_CLASSIFICATION_FR,
|
| 1978 |
+
datatype=["number", "markdown"] + ["number"] * len(DATA_PAIR_CLASSIFICATION_FR.columns),
|
| 1979 |
+
type="pandas",
|
| 1980 |
+
)
|
| 1981 |
+
with gr.Row():
|
| 1982 |
+
data_run_pair_classification_fr = gr.Button("Refresh")
|
| 1983 |
+
data_run_pair_classification_fr.click(
|
| 1984 |
+
partial(get_mteb_data, tasks=["PairClassification"], datasets=TASK_LIST_PAIR_CLASSIFICATION_FR),
|
| 1985 |
+
outputs=data_pair_classification_fr,
|
| 1986 |
+
)
|
| 1987 |
with gr.TabItem("Polish"):
|
| 1988 |
with gr.Row():
|
| 1989 |
gr.Markdown("""
|
|
|
|
| 2047 |
partial(get_mteb_data, tasks=["Reranking"], datasets=TASK_LIST_RERANKING_ZH),
|
| 2048 |
outputs=data_reranking_zh,
|
| 2049 |
)
|
| 2050 |
+
with gr.TabItem("French"):
|
| 2051 |
+
with gr.Row():
|
| 2052 |
+
gr.Markdown("""
|
| 2053 |
+
**Reranking French Leaderboard** 🥈🇫🇷
|
| 2054 |
+
|
| 2055 |
+
- **Metric:** Mean Average Precision (MAP)
|
| 2056 |
+
- **Languages:** French
|
| 2057 |
+
- **Credits:**
|
| 2058 |
+
""")
|
| 2059 |
+
with gr.Row():
|
| 2060 |
+
data_reranking_fr = gr.components.Dataframe(
|
| 2061 |
+
DATA_RERANKING_FR,
|
| 2062 |
+
datatype=["number", "markdown"] + ["number"] * len(DATA_RERANKING_FR.columns),
|
| 2063 |
+
type="pandas",
|
| 2064 |
+
)
|
| 2065 |
+
with gr.Row():
|
| 2066 |
+
data_run_reranking_fr = gr.Button("Refresh")
|
| 2067 |
+
data_run_reranking_fr.click(
|
| 2068 |
+
partial(get_mteb_data, tasks=["Reranking"], datasets=TASK_LIST_RERANKING_FR),
|
| 2069 |
+
outputs=data_reranking_fr,
|
| 2070 |
+
)
|
| 2071 |
with gr.TabItem("Retrieval"):
|
| 2072 |
with gr.TabItem("English"):
|
| 2073 |
with gr.Row():
|
|
|
|
| 2100 |
- **Credits:** [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding)
|
| 2101 |
""")
|
| 2102 |
with gr.Row():
|
| 2103 |
+
data_retrieval_fr = gr.components.Dataframe(
|
| 2104 |
+
DATA_RETRIEVAL_FR,
|
| 2105 |
# Add support for more columns than existing as a buffer for CQADupstack & other Retrieval tasks (e.g. MSMARCOv2)
|
| 2106 |
+
datatype=["number", "markdown"] + ["number"] * len(DATA_RETRIEVAL_FR.columns) * 2,
|
| 2107 |
type="pandas",
|
| 2108 |
)
|
| 2109 |
with gr.Row():
|
| 2110 |
+
data_run_retrieval_fr = gr.Button("Refresh")
|
| 2111 |
+
data_run_retrieval_fr.click(
|
| 2112 |
+
partial(get_mteb_data, tasks=["Retrieval"], datasets=TASK_LIST_RETRIEVAL_FR),
|
| 2113 |
+
outputs=data_retrieval_fr,
|
| 2114 |
)
|
| 2115 |
+
with gr.TabItem("French"):
|
| 2116 |
+
with gr.Row():
|
| 2117 |
+
gr.Markdown("""
|
| 2118 |
+
**Retrieval French Leaderboard** 🔎🇫🇷
|
| 2119 |
+
|
| 2120 |
+
- **Metric:** Normalized Discounted Cumulative Gain @ k (ndcg_at_10)
|
| 2121 |
+
- **Languages:** French
|
| 2122 |
+
- **Credits:**
|
| 2123 |
+
""")
|
| 2124 |
+
with gr.Row():
|
| 2125 |
+
data_retrieval_fr = gr.components.Dataframe(
|
| 2126 |
+
DATA_RETRIEVAL_FR,
|
| 2127 |
+
# Add support for more columns than existing as a buffer for CQADupstack & other Retrieval tasks (e.g. MSMARCOv2)
|
| 2128 |
+
datatype=["number", "markdown"] + ["number"] * len(DATA_RETRIEVAL_FR.columns) * 2,
|
| 2129 |
+
type="pandas",
|
| 2130 |
+
)
|
| 2131 |
+
with gr.Row():
|
| 2132 |
+
data_run_retrieval_fr = gr.Button("Refresh")
|
| 2133 |
+
data_run_retrieval_fr.click(
|
| 2134 |
+
partial(get_mteb_data, tasks=["Retrieval"], datasets=TASK_LIST_RETRIEVAL_FR),
|
| 2135 |
+
outputs=data_retrieval_fr,
|
| 2136 |
+
)
|
| 2137 |
with gr.TabItem("Polish"):
|
| 2138 |
with gr.Row():
|
| 2139 |
gr.Markdown("""
|
|
|
|
| 2198 |
partial(get_mteb_data, tasks=["STS"], datasets=TASK_LIST_STS_ZH),
|
| 2199 |
outputs=data_sts_zh,
|
| 2200 |
)
|
| 2201 |
+
with gr.TabItem("French"):
|
| 2202 |
+
with gr.Row():
|
| 2203 |
+
gr.Markdown("""
|
| 2204 |
+
**STS French Leaderboard** 🤖🇫🇷
|
| 2205 |
+
|
| 2206 |
+
- **Metric:** Spearman correlation based on cosine similarity
|
| 2207 |
+
- **Languages:** French
|
| 2208 |
+
- **Credits:**
|
| 2209 |
+
""")
|
| 2210 |
+
with gr.Row():
|
| 2211 |
+
data_sts_fr = gr.components.Dataframe(
|
| 2212 |
+
DATA_STS_FR,
|
| 2213 |
+
datatype=["number", "markdown"] + ["number"] * len(DATA_STS_FR.columns),
|
| 2214 |
+
type="pandas",
|
| 2215 |
+
)
|
| 2216 |
+
with gr.Row():
|
| 2217 |
+
data_run_sts_fr = gr.Button("Refresh")
|
| 2218 |
+
data_run_sts_fr.click(
|
| 2219 |
+
partial(get_mteb_data, tasks=["STS"], datasets=TASK_LIST_STS_FR),
|
| 2220 |
+
outputs=data_sts_fr,
|
| 2221 |
+
)
|
| 2222 |
with gr.TabItem("Polish"):
|
| 2223 |
with gr.Row():
|
| 2224 |
gr.Markdown("""
|