Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	Commit 
							
							·
						
						f61dd83
	
1
								Parent(s):
							
							099d855
								
Cache everything; Add rankings everwhere; Automate num dataset/score computation
Browse files
    	
        app.py
    CHANGED
    
    | @@ -393,6 +393,7 @@ MODELS_TO_SKIP = { | |
| 393 | 
             
                "anttip/ct2fast-e5-small-v2-hfie",
         | 
| 394 | 
             
                "newsrx/instructor-large",
         | 
| 395 | 
             
                "newsrx/instructor-xl",
         | 
|  | |
| 396 | 
             
            }
         | 
| 397 |  | 
| 398 |  | 
| @@ -471,7 +472,20 @@ def get_dim_seq_size(model): | |
| 471 | 
             
                        size = round(size["metadata"]["total_size"] / 1e9, 2)
         | 
| 472 | 
             
                return dim, seq, size
         | 
| 473 |  | 
| 474 | 
            -
            def  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 475 | 
             
                api = HfApi()
         | 
| 476 | 
             
                models = api.list_models(filter="mteb")
         | 
| 477 | 
             
                # Initialize list to models that we cannot fetch metadata from
         | 
| @@ -532,6 +546,8 @@ def get_mteb_data(tasks=["Clustering"], langs=[], datasets=[], fillna=True, add_ | |
| 532 | 
             
                cols = sorted(list(df.columns))
         | 
| 533 | 
             
                cols.insert(0, cols.pop(cols.index("Model")))
         | 
| 534 | 
             
                df = df[cols]
         | 
|  | |
|  | |
| 535 | 
             
                if fillna:
         | 
| 536 | 
             
                    df.fillna("", inplace=True)
         | 
| 537 | 
             
                return df
         | 
| @@ -551,10 +567,8 @@ def get_mteb_average(): | |
| 551 | 
             
                    langs=["en", "en-en"],
         | 
| 552 | 
             
                    fillna=False,
         | 
| 553 | 
             
                    add_emb_dim=True,
         | 
|  | |
| 554 | 
             
                )
         | 
| 555 | 
            -
                # Approximation (Missing Bitext Mining & including some nans)
         | 
| 556 | 
            -
                NUM_SCORES = DATA_OVERALL.shape[0] * DATA_OVERALL.shape[1]
         | 
| 557 | 
            -
             | 
| 558 | 
             
                # Debugging:
         | 
| 559 | 
             
                # DATA_OVERALL.to_csv("overall.csv")
         | 
| 560 |  | 
| @@ -572,32 +586,51 @@ def get_mteb_average(): | |
| 572 |  | 
| 573 | 
             
                DATA_OVERALL = DATA_OVERALL.round(2)
         | 
| 574 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 575 | 
             
                # Fill NaN after averaging
         | 
| 576 | 
             
                DATA_OVERALL.fillna("", inplace=True)
         | 
| 577 |  | 
| 578 | 
            -
                DATA_CLASSIFICATION_EN = DATA_OVERALL[["Model"] + TASK_LIST_CLASSIFICATION]
         | 
| 579 | 
            -
                DATA_CLUSTERING = DATA_OVERALL[["Model"] + TASK_LIST_CLUSTERING]
         | 
| 580 | 
            -
                DATA_PAIR_CLASSIFICATION = DATA_OVERALL[["Model"] + TASK_LIST_PAIR_CLASSIFICATION]
         | 
| 581 | 
            -
                DATA_RERANKING = DATA_OVERALL[["Model"] + TASK_LIST_RERANKING]
         | 
| 582 | 
            -
                DATA_RETRIEVAL = DATA_OVERALL[["Model"] + TASK_LIST_RETRIEVAL]
         | 
| 583 | 
            -
                DATA_STS_EN = DATA_OVERALL[["Model"] + TASK_LIST_STS]
         | 
| 584 | 
            -
                DATA_SUMMARIZATION = DATA_OVERALL[["Model"] + TASK_LIST_SUMMARIZATION]
         | 
| 585 | 
            -
             | 
| 586 | 
             
                DATA_OVERALL = DATA_OVERALL[["Rank", "Model", "Model Size (GB)", "Embedding Dimensions", "Sequence Length", f"Average ({len(TASK_LIST_EN)} datasets)", f"Classification Average ({len(TASK_LIST_CLASSIFICATION)} datasets)", f"Clustering Average ({len(TASK_LIST_CLUSTERING)} datasets)", f"Pair Classification Average ({len(TASK_LIST_PAIR_CLASSIFICATION)} datasets)", f"Reranking Average ({len(TASK_LIST_RERANKING)} datasets)", f"Retrieval Average ({len(TASK_LIST_RETRIEVAL)} datasets)", f"STS Average ({len(TASK_LIST_STS)} datasets)", f"Summarization Average ({len(TASK_LIST_SUMMARIZATION)} dataset)"]]
         | 
| 587 |  | 
| 588 | 
             
                return DATA_OVERALL
         | 
| 589 |  | 
| 590 | 
             
            get_mteb_average()
         | 
| 591 | 
            -
             | 
| 592 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 593 |  | 
|  | |
| 594 | 
             
            with block:
         | 
| 595 | 
             
                gr.Markdown(f"""
         | 
| 596 | 
             
                Massive Text Embedding Benchmark (MTEB) Leaderboard. To submit, refer to the <a href="https://github.com/embeddings-benchmark/mteb#leaderboard" target="_blank" style="text-decoration: underline">MTEB GitHub repository</a> 🤗 Refer to the [MTEB paper](https://arxiv.org/abs/2210.07316) for details on metrics, tasks and models.
         | 
| 597 |  | 
| 598 | 
            -
                - **Total Datasets**:  | 
| 599 | 
             
                - **Total Languages**: 112
         | 
| 600 | 
            -
                - **Total Scores**:  | 
| 601 | 
             
                - **Total Models**: {len(DATA_OVERALL)}
         | 
| 602 | 
             
                """)
         | 
| 603 | 
             
                with gr.Tabs():
         | 
| @@ -629,7 +662,8 @@ with block: | |
| 629 | 
             
                                """)
         | 
| 630 | 
             
                        with gr.Row():
         | 
| 631 | 
             
                            data_bitext_mining = gr.components.Dataframe(
         | 
| 632 | 
            -
                                 | 
|  | |
| 633 | 
             
                                type="pandas",
         | 
| 634 | 
             
                            )
         | 
| 635 | 
             
                        with gr.Row():
         | 
| @@ -652,7 +686,7 @@ with block: | |
| 652 | 
             
                            with gr.Row():
         | 
| 653 | 
             
                                data_classification_en = gr.components.Dataframe(
         | 
| 654 | 
             
                                    DATA_CLASSIFICATION_EN,
         | 
| 655 | 
            -
                                    datatype=["markdown"] + ["number"] * len(DATA_CLASSIFICATION_EN.columns),
         | 
| 656 | 
             
                                    type="pandas",
         | 
| 657 | 
             
                                )
         | 
| 658 | 
             
                            with gr.Row():
         | 
| @@ -677,7 +711,8 @@ with block: | |
| 677 | 
             
                                """)
         | 
| 678 | 
             
                            with gr.Row():
         | 
| 679 | 
             
                                data_classification = gr.components.Dataframe(
         | 
| 680 | 
            -
                                     | 
|  | |
| 681 | 
             
                                    type="pandas",
         | 
| 682 | 
             
                                )
         | 
| 683 | 
             
                            with gr.Row():
         | 
| @@ -700,7 +735,7 @@ with block: | |
| 700 | 
             
                            with gr.Row():
         | 
| 701 | 
             
                                data_clustering = gr.components.Dataframe(
         | 
| 702 | 
             
                                    DATA_CLUSTERING,
         | 
| 703 | 
            -
                                    datatype=["markdown"] + ["number"] * len(DATA_CLUSTERING.columns),
         | 
| 704 | 
             
                                    type="pandas",
         | 
| 705 | 
             
                                )
         | 
| 706 | 
             
                            with gr.Row():
         | 
| @@ -724,7 +759,8 @@ with block: | |
| 724 | 
             
                                """)
         | 
| 725 | 
             
                            with gr.Row():
         | 
| 726 | 
             
                                data_clustering_de = gr.components.Dataframe(
         | 
| 727 | 
            -
                                     | 
|  | |
| 728 | 
             
                                    type="pandas",
         | 
| 729 | 
             
                                )
         | 
| 730 | 
             
                            with gr.Row():
         | 
| @@ -748,7 +784,7 @@ with block: | |
| 748 | 
             
                        with gr.Row():
         | 
| 749 | 
             
                            data_pair_classification = gr.components.Dataframe(
         | 
| 750 | 
             
                                DATA_PAIR_CLASSIFICATION,
         | 
| 751 | 
            -
                                datatype=["markdown"] + ["number"] * len(DATA_PAIR_CLASSIFICATION.columns),
         | 
| 752 | 
             
                                type="pandas",
         | 
| 753 | 
             
                            )
         | 
| 754 | 
             
                        with gr.Row():
         | 
| @@ -771,7 +807,7 @@ with block: | |
| 771 | 
             
                            data_retrieval = gr.components.Dataframe(
         | 
| 772 | 
             
                                DATA_RETRIEVAL,
         | 
| 773 | 
             
                                # Add support for more columns than existing as a buffer for CQADupstack & other Retrieval tasks (e.g. MSMARCOv2)
         | 
| 774 | 
            -
                                datatype=["markdown"] + ["number"] * len(DATA_RETRIEVAL.columns) * 2,
         | 
| 775 | 
             
                                type="pandas",
         | 
| 776 | 
             
                            )
         | 
| 777 | 
             
                        with gr.Row():
         | 
| @@ -791,7 +827,7 @@ with block: | |
| 791 | 
             
                        with gr.Row():
         | 
| 792 | 
             
                            data_reranking = gr.components.Dataframe(
         | 
| 793 | 
             
                                DATA_RERANKING,
         | 
| 794 | 
            -
                                datatype=["markdown"] + ["number"] * len(DATA_RERANKING.columns),
         | 
| 795 | 
             
                                type="pandas",
         | 
| 796 | 
             
                            )
         | 
| 797 | 
             
                        with gr.Row():
         | 
| @@ -813,7 +849,7 @@ with block: | |
| 813 | 
             
                            with gr.Row():
         | 
| 814 | 
             
                                data_sts_en = gr.components.Dataframe(
         | 
| 815 | 
             
                                    DATA_STS_EN,
         | 
| 816 | 
            -
                                    datatype=["markdown"] + ["number"] * len(DATA_STS_EN.columns),
         | 
| 817 | 
             
                                    type="pandas",
         | 
| 818 | 
             
                                )
         | 
| 819 | 
             
                            with gr.Row():
         | 
| @@ -835,7 +871,8 @@ with block: | |
| 835 | 
             
                                """)
         | 
| 836 | 
             
                            with gr.Row():
         | 
| 837 | 
             
                                data_sts = gr.components.Dataframe(
         | 
| 838 | 
            -
                                     | 
|  | |
| 839 | 
             
                                    type="pandas",
         | 
| 840 | 
             
                                )
         | 
| 841 | 
             
                            with gr.Row():
         | 
| @@ -853,7 +890,7 @@ with block: | |
| 853 | 
             
                        with gr.Row():
         | 
| 854 | 
             
                            data_summarization = gr.components.Dataframe(
         | 
| 855 | 
             
                                DATA_SUMMARIZATION,
         | 
| 856 | 
            -
                                datatype=["markdown"] + ["number"] * 2,
         | 
| 857 | 
             
                                type="pandas",
         | 
| 858 | 
             
                            )
         | 
| 859 | 
             
                        with gr.Row():
         | 
| @@ -880,8 +917,9 @@ with block: | |
| 880 | 
             
                }
         | 
| 881 | 
             
                ```
         | 
| 882 | 
             
                """)
         | 
| 883 | 
            -
                # Running the  | 
| 884 | 
            -
                # This is optional - If deactivated the data  | 
|  | |
| 885 | 
             
                block.load(get_mteb_data, inputs=[task_bitext_mining], outputs=data_bitext_mining)
         | 
| 886 | 
             
                block.load(get_mteb_data, inputs=[task_classification_en, lang_classification_en], outputs=data_classification_en)
         | 
| 887 | 
             
                block.load(get_mteb_data, inputs=[task_classification], outputs=data_classification)
         | 
| @@ -893,6 +931,7 @@ with block: | |
| 893 | 
             
                block.load(get_mteb_data, inputs=[task_sts_en, lang_sts_en], outputs=data_sts_en)
         | 
| 894 | 
             
                block.load(get_mteb_data, inputs=[task_sts], outputs=data_sts)
         | 
| 895 | 
             
                block.load(get_mteb_data, inputs=[task_summarization], outputs=data_summarization)
         | 
|  | |
| 896 |  | 
| 897 | 
             
            block.queue(concurrency_count=40, max_size=10)
         | 
| 898 | 
             
            block.launch()
         | 
|  | |
| 393 | 
             
                "anttip/ct2fast-e5-small-v2-hfie",
         | 
| 394 | 
             
                "newsrx/instructor-large",
         | 
| 395 | 
             
                "newsrx/instructor-xl",
         | 
| 396 | 
            +
                "dmlls/all-mpnet-base-v2",
         | 
| 397 | 
             
            }
         | 
| 398 |  | 
| 399 |  | 
|  | |
| 472 | 
             
                        size = round(size["metadata"]["total_size"] / 1e9, 2)
         | 
| 473 | 
             
                return dim, seq, size
         | 
| 474 |  | 
| 475 | 
            +
            def add_rank(df):
         | 
| 476 | 
            +
                cols_to_rank = [col for col in df.columns if col not in ["Model", "Model Size (GB)", "Embedding Dimensions", "Sequence Length"]]
         | 
| 477 | 
            +
                if len(cols_to_rank) == 1:
         | 
| 478 | 
            +
                    df.sort_values(cols_to_rank[0], ascending=False, inplace=True)
         | 
| 479 | 
            +
                else:
         | 
| 480 | 
            +
                    df.insert(1, "Average", df[cols_to_rank].mean(axis=1, skipna=False))
         | 
| 481 | 
            +
                    df.sort_values("Average", ascending=False, inplace=True)
         | 
| 482 | 
            +
                df.insert(0, "Rank", list(range(1, len(df) + 1)))
         | 
| 483 | 
            +
                df = df.round(2)
         | 
| 484 | 
            +
                # Fill NaN after averaging
         | 
| 485 | 
            +
                df.fillna("", inplace=True)
         | 
| 486 | 
            +
                return df
         | 
| 487 | 
            +
             | 
| 488 | 
            +
            def get_mteb_data(tasks=["Clustering"], langs=[], datasets=[], fillna=True, add_emb_dim=False, task_to_metric=TASK_TO_METRIC, rank=True):
         | 
| 489 | 
             
                api = HfApi()
         | 
| 490 | 
             
                models = api.list_models(filter="mteb")
         | 
| 491 | 
             
                # Initialize list to models that we cannot fetch metadata from
         | 
|  | |
| 546 | 
             
                cols = sorted(list(df.columns))
         | 
| 547 | 
             
                cols.insert(0, cols.pop(cols.index("Model")))
         | 
| 548 | 
             
                df = df[cols]
         | 
| 549 | 
            +
                if rank:
         | 
| 550 | 
            +
                    df = add_rank(df)       
         | 
| 551 | 
             
                if fillna:
         | 
| 552 | 
             
                    df.fillna("", inplace=True)
         | 
| 553 | 
             
                return df
         | 
|  | |
| 567 | 
             
                    langs=["en", "en-en"],
         | 
| 568 | 
             
                    fillna=False,
         | 
| 569 | 
             
                    add_emb_dim=True,
         | 
| 570 | 
            +
                    rank=False,
         | 
| 571 | 
             
                )
         | 
|  | |
|  | |
|  | |
| 572 | 
             
                # Debugging:
         | 
| 573 | 
             
                # DATA_OVERALL.to_csv("overall.csv")
         | 
| 574 |  | 
|  | |
| 586 |  | 
| 587 | 
             
                DATA_OVERALL = DATA_OVERALL.round(2)
         | 
| 588 |  | 
| 589 | 
            +
                DATA_CLASSIFICATION_EN = add_rank(DATA_OVERALL[["Model"] + TASK_LIST_CLASSIFICATION])
         | 
| 590 | 
            +
                DATA_CLUSTERING = add_rank(DATA_OVERALL[["Model"] + TASK_LIST_CLUSTERING])
         | 
| 591 | 
            +
                DATA_PAIR_CLASSIFICATION = add_rank(DATA_OVERALL[["Model"] + TASK_LIST_PAIR_CLASSIFICATION])
         | 
| 592 | 
            +
                DATA_RERANKING = add_rank(DATA_OVERALL[["Model"] + TASK_LIST_RERANKING])
         | 
| 593 | 
            +
                DATA_RETRIEVAL = add_rank(DATA_OVERALL[["Model"] + TASK_LIST_RETRIEVAL])
         | 
| 594 | 
            +
                DATA_STS_EN = add_rank(DATA_OVERALL[["Model"] + TASK_LIST_STS])
         | 
| 595 | 
            +
                DATA_SUMMARIZATION = add_rank(DATA_OVERALL[["Model"] + TASK_LIST_SUMMARIZATION])
         | 
| 596 | 
            +
             | 
| 597 | 
             
                # Fill NaN after averaging
         | 
| 598 | 
             
                DATA_OVERALL.fillna("", inplace=True)
         | 
| 599 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 600 | 
             
                DATA_OVERALL = DATA_OVERALL[["Rank", "Model", "Model Size (GB)", "Embedding Dimensions", "Sequence Length", f"Average ({len(TASK_LIST_EN)} datasets)", f"Classification Average ({len(TASK_LIST_CLASSIFICATION)} datasets)", f"Clustering Average ({len(TASK_LIST_CLUSTERING)} datasets)", f"Pair Classification Average ({len(TASK_LIST_PAIR_CLASSIFICATION)} datasets)", f"Reranking Average ({len(TASK_LIST_RERANKING)} datasets)", f"Retrieval Average ({len(TASK_LIST_RETRIEVAL)} datasets)", f"STS Average ({len(TASK_LIST_STS)} datasets)", f"Summarization Average ({len(TASK_LIST_SUMMARIZATION)} dataset)"]]
         | 
| 601 |  | 
| 602 | 
             
                return DATA_OVERALL
         | 
| 603 |  | 
| 604 | 
             
            get_mteb_average()
         | 
| 605 | 
            +
            DATA_BITEXT_MINING = get_mteb_data(["BitextMining"])
         | 
| 606 | 
            +
            DATA_CLASSIFICATION = get_mteb_data(["Classification"])
         | 
| 607 | 
            +
            DATA_CLUSTERING_GERMAN = get_mteb_data(["Clustering"], [], TASK_LIST_CLUSTERING_DE)
         | 
| 608 | 
            +
            DATA_STS = get_mteb_data(["STS"])
         | 
| 609 | 
            +
             | 
| 610 | 
            +
            # Exact, add all non-nan integer values for every dataset
         | 
| 611 | 
            +
            NUM_SCORES = 0
         | 
| 612 | 
            +
            DATASETS = []
         | 
| 613 | 
            +
            # LANGUAGES = []
         | 
| 614 | 
            +
            for d in [DATA_BITEXT_MINING, DATA_CLASSIFICATION, DATA_CLUSTERING, DATA_CLUSTERING_GERMAN, DATA_PAIR_CLASSIFICATION, DATA_RERANKING, DATA_RETRIEVAL, DATA_STS, DATA_SUMMARIZATION]:
         | 
| 615 | 
            +
                # NUM_SCORES += d.iloc[:, 1:].apply(lambda x: sum([1 for y in x if isinstance(y, float) and not np.isnan(y)]), axis=1).sum()
         | 
| 616 | 
            +
                cols_to_ignore = 3 if "Average" in d.columns else 2
         | 
| 617 | 
            +
                # Count number of scores including only non-nan floats & excluding the rank column
         | 
| 618 | 
            +
                NUM_SCORES += d.iloc[:, cols_to_ignore:].notna().sum().sum()
         | 
| 619 | 
            +
                # Exclude rank & model name column (first two); Do not count different language versions as different datasets
         | 
| 620 | 
            +
                DATASETS += [i.split(" ")[0] for i in d.columns[cols_to_ignore:]]
         | 
| 621 | 
            +
                # LANGUAGES += [i.split(" ")[-1] for i in d.columns[cols_to_ignore:]]
         | 
| 622 | 
            +
             | 
| 623 | 
            +
            NUM_DATASETS = len(set(DATASETS))
         | 
| 624 | 
            +
            # NUM_LANGUAGES = len(set(LANGUAGES))
         | 
| 625 |  | 
| 626 | 
            +
            block = gr.Blocks()
         | 
| 627 | 
             
            with block:
         | 
| 628 | 
             
                gr.Markdown(f"""
         | 
| 629 | 
             
                Massive Text Embedding Benchmark (MTEB) Leaderboard. To submit, refer to the <a href="https://github.com/embeddings-benchmark/mteb#leaderboard" target="_blank" style="text-decoration: underline">MTEB GitHub repository</a> 🤗 Refer to the [MTEB paper](https://arxiv.org/abs/2210.07316) for details on metrics, tasks and models.
         | 
| 630 |  | 
| 631 | 
            +
                - **Total Datasets**: {NUM_DATASETS}
         | 
| 632 | 
             
                - **Total Languages**: 112
         | 
| 633 | 
            +
                - **Total Scores**: {NUM_SCORES}
         | 
| 634 | 
             
                - **Total Models**: {len(DATA_OVERALL)}
         | 
| 635 | 
             
                """)
         | 
| 636 | 
             
                with gr.Tabs():
         | 
|  | |
| 662 | 
             
                                """)
         | 
| 663 | 
             
                        with gr.Row():
         | 
| 664 | 
             
                            data_bitext_mining = gr.components.Dataframe(
         | 
| 665 | 
            +
                                DATA_BITEXT_MINING,
         | 
| 666 | 
            +
                                datatype=["number", "markdown"] + ["number"] * len(DATA_BITEXT_MINING.columns),
         | 
| 667 | 
             
                                type="pandas",
         | 
| 668 | 
             
                            )
         | 
| 669 | 
             
                        with gr.Row():
         | 
|  | |
| 686 | 
             
                            with gr.Row():
         | 
| 687 | 
             
                                data_classification_en = gr.components.Dataframe(
         | 
| 688 | 
             
                                    DATA_CLASSIFICATION_EN,
         | 
| 689 | 
            +
                                    datatype=["number", "markdown"] + ["number"] * len(DATA_CLASSIFICATION_EN.columns),
         | 
| 690 | 
             
                                    type="pandas",
         | 
| 691 | 
             
                                )
         | 
| 692 | 
             
                            with gr.Row():
         | 
|  | |
| 711 | 
             
                                """)
         | 
| 712 | 
             
                            with gr.Row():
         | 
| 713 | 
             
                                data_classification = gr.components.Dataframe(
         | 
| 714 | 
            +
                                    DATA_CLASSIFICATION,
         | 
| 715 | 
            +
                                    datatype=["number", "markdown"] + ["number"] * len(DATA_CLASSIFICATION) * 10,
         | 
| 716 | 
             
                                    type="pandas",
         | 
| 717 | 
             
                                )
         | 
| 718 | 
             
                            with gr.Row():
         | 
|  | |
| 735 | 
             
                            with gr.Row():
         | 
| 736 | 
             
                                data_clustering = gr.components.Dataframe(
         | 
| 737 | 
             
                                    DATA_CLUSTERING,
         | 
| 738 | 
            +
                                    datatype=["number", "markdown"] + ["number"] * len(DATA_CLUSTERING.columns),
         | 
| 739 | 
             
                                    type="pandas",
         | 
| 740 | 
             
                                )
         | 
| 741 | 
             
                            with gr.Row():
         | 
|  | |
| 759 | 
             
                                """)
         | 
| 760 | 
             
                            with gr.Row():
         | 
| 761 | 
             
                                data_clustering_de = gr.components.Dataframe(
         | 
| 762 | 
            +
                                    DATA_CLUSTERING_GERMAN,
         | 
| 763 | 
            +
                                    datatype=["number", "markdown"] + ["number"] * len(DATA_CLUSTERING_GERMAN.columns) * 2,
         | 
| 764 | 
             
                                    type="pandas",
         | 
| 765 | 
             
                                )
         | 
| 766 | 
             
                            with gr.Row():
         | 
|  | |
| 784 | 
             
                        with gr.Row():
         | 
| 785 | 
             
                            data_pair_classification = gr.components.Dataframe(
         | 
| 786 | 
             
                                DATA_PAIR_CLASSIFICATION,
         | 
| 787 | 
            +
                                datatype=["number", "markdown"] + ["number"] * len(DATA_PAIR_CLASSIFICATION.columns),
         | 
| 788 | 
             
                                type="pandas",
         | 
| 789 | 
             
                            )
         | 
| 790 | 
             
                        with gr.Row():
         | 
|  | |
| 807 | 
             
                            data_retrieval = gr.components.Dataframe(
         | 
| 808 | 
             
                                DATA_RETRIEVAL,
         | 
| 809 | 
             
                                # Add support for more columns than existing as a buffer for CQADupstack & other Retrieval tasks (e.g. MSMARCOv2)
         | 
| 810 | 
            +
                                datatype=["number", "markdown"] + ["number"] * len(DATA_RETRIEVAL.columns) * 2,
         | 
| 811 | 
             
                                type="pandas",
         | 
| 812 | 
             
                            )
         | 
| 813 | 
             
                        with gr.Row():
         | 
|  | |
| 827 | 
             
                        with gr.Row():
         | 
| 828 | 
             
                            data_reranking = gr.components.Dataframe(
         | 
| 829 | 
             
                                DATA_RERANKING,
         | 
| 830 | 
            +
                                datatype=["number", "markdown"] + ["number"] * len(DATA_RERANKING.columns),
         | 
| 831 | 
             
                                type="pandas",
         | 
| 832 | 
             
                            )
         | 
| 833 | 
             
                        with gr.Row():
         | 
|  | |
| 849 | 
             
                            with gr.Row():
         | 
| 850 | 
             
                                data_sts_en = gr.components.Dataframe(
         | 
| 851 | 
             
                                    DATA_STS_EN,
         | 
| 852 | 
            +
                                    datatype=["number", "markdown"] + ["number"] * len(DATA_STS_EN.columns),
         | 
| 853 | 
             
                                    type="pandas",
         | 
| 854 | 
             
                                )
         | 
| 855 | 
             
                            with gr.Row():
         | 
|  | |
| 871 | 
             
                                """)
         | 
| 872 | 
             
                            with gr.Row():
         | 
| 873 | 
             
                                data_sts = gr.components.Dataframe(
         | 
| 874 | 
            +
                                    DATA_STS,
         | 
| 875 | 
            +
                                    datatype=["number", "markdown"] + ["number"] * len(DATA_STS.columns) * 2,
         | 
| 876 | 
             
                                    type="pandas",
         | 
| 877 | 
             
                                )
         | 
| 878 | 
             
                            with gr.Row():
         | 
|  | |
| 890 | 
             
                        with gr.Row():
         | 
| 891 | 
             
                            data_summarization = gr.components.Dataframe(
         | 
| 892 | 
             
                                DATA_SUMMARIZATION,
         | 
| 893 | 
            +
                                datatype=["number", "markdown"] + ["number"] * 2,
         | 
| 894 | 
             
                                type="pandas",
         | 
| 895 | 
             
                            )
         | 
| 896 | 
             
                        with gr.Row():
         | 
|  | |
| 917 | 
             
                }
         | 
| 918 | 
             
                ```
         | 
| 919 | 
             
                """)
         | 
| 920 | 
            +
                # Running the functions on page load in addition to when the button is clicked
         | 
| 921 | 
            +
                # This is optional - If deactivated the data loaded at "Build time" is shown like for Overall tab
         | 
| 922 | 
            +
                """
         | 
| 923 | 
             
                block.load(get_mteb_data, inputs=[task_bitext_mining], outputs=data_bitext_mining)
         | 
| 924 | 
             
                block.load(get_mteb_data, inputs=[task_classification_en, lang_classification_en], outputs=data_classification_en)
         | 
| 925 | 
             
                block.load(get_mteb_data, inputs=[task_classification], outputs=data_classification)
         | 
|  | |
| 931 | 
             
                block.load(get_mteb_data, inputs=[task_sts_en, lang_sts_en], outputs=data_sts_en)
         | 
| 932 | 
             
                block.load(get_mteb_data, inputs=[task_sts], outputs=data_sts)
         | 
| 933 | 
             
                block.load(get_mteb_data, inputs=[task_summarization], outputs=data_summarization)
         | 
| 934 | 
            +
                """
         | 
| 935 |  | 
| 936 | 
             
            block.queue(concurrency_count=40, max_size=10)
         | 
| 937 | 
             
            block.launch()
         | 
 
			
