Spaces:
Build error
Build error
| # PointRend: Image Segmentation as Rendering | |
| Alexander Kirillov, Yuxin Wu, Kaiming He, Ross Girshick | |
| [[`arXiv`](https://arxiv.org/abs/1912.08193)] [[`BibTeX`](#CitingPointRend)] | |
| <div align="center"> | |
| <img src="https://alexander-kirillov.github.io/images/kirillov2019pointrend.jpg"/> | |
| </div><br/> | |
| In this repository, we release code for PointRend in Detectron2. PointRend can be flexibly applied to both instance and semantic segmentation tasks by building on top of existing state-of-the-art models. | |
| ## Quick start and visualization | |
| This [Colab Notebook](https://colab.research.google.com/drive/1isGPL5h5_cKoPPhVL9XhMokRtHDvmMVL) tutorial contains examples of PointRend usage and visualizations of its point sampling stages. | |
| ## Training | |
| To train a model with 8 GPUs run: | |
| ```bash | |
| cd /path/to/detectron2/projects/PointRend | |
| python train_net.py --config-file configs/InstanceSegmentation/pointrend_rcnn_R_50_FPN_1x_coco.yaml --num-gpus 8 | |
| ``` | |
| ## Evaluation | |
| Model evaluation can be done similarly: | |
| ```bash | |
| cd /path/to/detectron2/projects/PointRend | |
| python train_net.py --config-file configs/InstanceSegmentation/pointrend_rcnn_R_50_FPN_1x_coco.yaml --eval-only MODEL.WEIGHTS /path/to/model_checkpoint | |
| ``` | |
| # Pretrained Models | |
| ## Instance Segmentation | |
| #### COCO | |
| <table><tbody> | |
| <!-- START TABLE --> | |
| <!-- TABLE HEADER --> | |
| <th valign="bottom">Mask<br/>head</th> | |
| <th valign="bottom">Backbone</th> | |
| <th valign="bottom">lr<br/>sched</th> | |
| <th valign="bottom">Output<br/>resolution</th> | |
| <th valign="bottom">mask<br/>AP</th> | |
| <th valign="bottom">mask<br/>AP*</th> | |
| <th valign="bottom">model id</th> | |
| <th valign="bottom">download</th> | |
| <!-- TABLE BODY --> | |
| <tr><td align="left"><a href="configs/InstanceSegmentation/pointrend_rcnn_R_50_FPN_1x_coco.yaml">PointRend</a></td> | |
| <td align="center">R50-FPN</td> | |
| <td align="center">1×</td> | |
| <td align="center">224×224</td> | |
| <td align="center">36.2</td> | |
| <td align="center">39.7</td> | |
| <td align="center">164254221</td> | |
| <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/PointRend/InstanceSegmentation/pointrend_rcnn_R_50_FPN_1x_coco/164254221/model_final_736f5a.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/PointRend/InstanceSegmentation/pointrend_rcnn_R_50_FPN_1x_coco/164254221/metrics.json">metrics</a></td> | |
| </tr> | |
| <tr><td align="left"><a href="configs/InstanceSegmentation/pointrend_rcnn_R_50_FPN_3x_coco.yaml">PointRend</a></td> | |
| <td align="center">R50-FPN</td> | |
| <td align="center">3×</td> | |
| <td align="center">224×224</td> | |
| <td align="center">38.3</td> | |
| <td align="center">41.6</td> | |
| <td align="center">164955410</td> | |
| <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/PointRend/InstanceSegmentation/pointrend_rcnn_R_50_FPN_3x_coco/164955410/model_final_edd263.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/PointRend/InstanceSegmentation/pointrend_rcnn_R_50_FPN_3x_coco/164955410/metrics.json">metrics</a></td> | |
| </tr> | |
| </tr> | |
| <tr><td align="left"><a href="configs/InstanceSegmentation/pointrend_rcnn_R_101_FPN_3x_coco.yaml">PointRend</a></td> | |
| <td align="center">R101-FPN</td> | |
| <td align="center">3×</td> | |
| <td align="center">224×224</td> | |
| <td align="center">40.1</td> | |
| <td align="center">43.8</td> | |
| <td align="center"></td> | |
| <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/PointRend/InstanceSegmentation/pointrend_rcnn_R_101_FPN_3x_coco/28119983/model_final_3f4d2a.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/PointRend/InstanceSegmentation/pointrend_rcnn_R_101_FPN_3x_coco/28119983/metrics.json">metrics</a></td> | |
| </tr> | |
| </tr> | |
| <tr><td align="left"><a href="configs/InstanceSegmentation/pointrend_rcnn_X_101_32x8d_FPN_3x_coco.yaml">PointRend</a></td> | |
| <td align="center">X101-FPN</td> | |
| <td align="center">3×</td> | |
| <td align="center">224×224</td> | |
| <td align="center">41.1</td> | |
| <td align="center">44.7</td> | |
| <td align="center"></td> | |
| <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/PointRend/InstanceSegmentation/pointrend_rcnn_X_101_32x8d_FPN_3x_coco/28119989/model_final_ba17b9.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/PointRend/InstanceSegmentation/pointrend_rcnn_X_101_32x8d_FPN_3x_coco/28119989/metrics.json">metrics</a></td> | |
| </tr> | |
| </tbody></table> | |
| AP* is COCO mask AP evaluated against the higher-quality LVIS annotations; see the paper for details. | |
| Run `python detectron2/datasets/prepare_cocofied_lvis.py` to prepare GT files for AP* evaluation. | |
| Since LVIS annotations are not exhaustive, `lvis-api` and not `cocoapi` should be used to evaluate AP*. | |
| #### Cityscapes | |
| Cityscapes model is trained with ImageNet pretraining. | |
| <table><tbody> | |
| <!-- START TABLE --> | |
| <!-- TABLE HEADER --> | |
| <th valign="bottom">Mask<br/>head</th> | |
| <th valign="bottom">Backbone</th> | |
| <th valign="bottom">lr<br/>sched</th> | |
| <th valign="bottom">Output<br/>resolution</th> | |
| <th valign="bottom">mask<br/>AP</th> | |
| <th valign="bottom">model id</th> | |
| <th valign="bottom">download</th> | |
| <!-- TABLE BODY --> | |
| <tr><td align="left"><a href="configs/InstanceSegmentation/pointrend_rcnn_R_50_FPN_1x_cityscapes.yaml">PointRend</a></td> | |
| <td align="center">R50-FPN</td> | |
| <td align="center">1×</td> | |
| <td align="center">224×224</td> | |
| <td align="center">35.9</td> | |
| <td align="center">164255101</td> | |
| <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/PointRend/InstanceSegmentation/pointrend_rcnn_R_50_FPN_1x_cityscapes/164255101/model_final_115bfb.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/PointRend/InstanceSegmentation/pointrend_rcnn_R_50_FPN_1x_cityscapes/164255101/metrics.json">metrics</a></td> | |
| </tr> | |
| </tbody></table> | |
| ## Semantic Segmentation | |
| #### Cityscapes | |
| Cityscapes model is trained with ImageNet pretraining. | |
| <table><tbody> | |
| <!-- START TABLE --> | |
| <!-- TABLE HEADER --> | |
| <th valign="bottom">Method</th> | |
| <th valign="bottom">Backbone</th> | |
| <th valign="bottom">Output<br/>resolution</th> | |
| <th valign="bottom">mIoU</th> | |
| <th valign="bottom">model id</th> | |
| <th valign="bottom">download</th> | |
| <!-- TABLE BODY --> | |
| <tr><td align="left"><a href="configs/SemanticSegmentation/pointrend_semantic_R_101_FPN_1x_cityscapes.yaml">SemanticFPN + PointRend</a></td> | |
| <td align="center">R101-FPN</td> | |
| <td align="center">1024×2048</td> | |
| <td align="center">78.9</td> | |
| <td align="center">202576688</td> | |
| <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/PointRend/SemanticSegmentation/pointrend_semantic_R_101_FPN_1x_cityscapes/202576688/model_final_cf6ac1.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/PointRend/SemanticSegmentation/pointrend_semantic_R_101_FPN_1x_cityscapes/202576688/metrics.json">metrics</a></td> | |
| </tr> | |
| </tbody></table> | |
| ## <a name="CitingPointRend"></a>Citing PointRend | |
| If you use PointRend, please use the following BibTeX entry. | |
| ```BibTeX | |
| @InProceedings{kirillov2019pointrend, | |
| title={{PointRend}: Image Segmentation as Rendering}, | |
| author={Alexander Kirillov and Yuxin Wu and Kaiming He and Ross Girshick}, | |
| journal={ArXiv:1912.08193}, | |
| year={2019} | |
| } | |
| ``` | |
| ## <a name="CitingImplicitPointRend"></a>Citing Implicit PointRend | |
| If you use Implicit PointRend, please use the following BibTeX entry. | |
| ```BibTeX | |
| @InProceedings{cheng2021pointly, | |
| title={Pointly-Supervised Instance Segmentation, | |
| author={Bowen Cheng and Omkar Parkhi and Alexander Kirillov}, | |
| journal={ArXiv}, | |
| year={2021} | |
| } | |
| ``` | |