from transformers import AutoModelForSequenceClassification from transformers import AutoTokenizer, AutoConfig from scipy.special import softmax import gradio as gr # Load model and tokenizer model_path = "Azie88/Coachella_sentiment_analysis_roberta" tokenizer = AutoTokenizer.from_pretrained(model_path) config = AutoConfig.from_pretrained(model_path) model = AutoModelForSequenceClassification.from_pretrained(model_path) # Preprocessing to clean up usernames and links def preprocess(text): new_text = [] for t in text.split(" "): t = '@user' if t.startswith('@') and len(t) > 1 else t t = 'http' if t.startswith('http') else t new_text.append(t) return " ".join(new_text) # Sentiment prediction returning styled HTML def sentiment_analysis(text): text = preprocess(text) encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) scores_ = output[0][0].detach().numpy() scores_ = softmax(scores_) labels = ['Negative', 'Neutral', 'Positive'] emojis = ['😠', '😐', '😊'] colors = ['red', 'gray', 'green'] top_idx = scores_.argmax() label = labels[top_idx] emoji = emojis[top_idx] color = colors[top_idx] confidence = round(scores_[top_idx] * 100, 2) # Styled HTML output result = f"""
{emoji} {label}
Confidence: {confidence:.2f}%
""" return result # Gradio UI demo = gr.Interface( fn=sentiment_analysis, inputs=gr.Textbox(placeholder="Type a tweet about #Coachella (e.g., 'Lineup is 🔥🔥🔥')", lines=3, label="Tweet Text"), outputs=gr.HTML(), theme=gr.themes.Base(), examples=[ ["OMG the #Coachella lineup is absolutely 🔥! My body is ready! 🎶 #FestivalVibes #CantWait"], ["Seriously, @Coachella? This lineup is pure trash. Hard pass this year. #Disappointed #NotMyCoachella"], ["Tyla set to perform at #Coachella2025"] ], title='🎶 Coachella Tweet Sentiment Analyzer', description="Analyze if a tweet related to the #Coachella festival has a Positive, Neutral, or Negative sentiment." ) demo.launch()