Spaces:
Sleeping
Sleeping
Azie88
commited on
Commit
·
0bb4d1d
1
Parent(s):
8f355c5
ML model
Browse files
app.py
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import pandas as pd
|
4 |
+
import os, joblib
|
5 |
+
import re
|
6 |
+
|
7 |
+
# load model pipeline
|
8 |
+
file_path = os.path.abspath('toolkit/pipeline.joblib')
|
9 |
+
pipeline = joblib.load(file_path)
|
10 |
+
|
11 |
+
|
12 |
+
#function to calculate week hour from weekday and hour
|
13 |
+
def calculate_pickup_week_hour(pickup_hour, pickup_weekday):
|
14 |
+
return pickup_weekday * 24 + pickup_hour
|
15 |
+
|
16 |
+
def predict(origin_lat, origin_lon, Destination_lat, Destination_lon,
|
17 |
+
Trip_distance, dewpoint_2m_temperature,
|
18 |
+
minimum_2m_air_temperature, pickup_weekday, pickup_hour,
|
19 |
+
cluster_id, temperature_range, rain):
|
20 |
+
|
21 |
+
# Calculate pickup_week_hour
|
22 |
+
pickup_week_hour = calculate_pickup_week_hour(pickup_hour, pickup_weekday)
|
23 |
+
|
24 |
+
# Modeling
|
25 |
+
try:
|
26 |
+
model_output = abs(int(pipeline.predict(pd.DataFrame([[origin_lat, origin_lon, Destination_lat, Destination_lon,
|
27 |
+
Trip_distance, dewpoint_2m_temperature,
|
28 |
+
minimum_2m_air_temperature, pickup_weekday, pickup_hour,
|
29 |
+
pickup_week_hour, cluster_id, temperature_range,
|
30 |
+
rain]], columns=['Origin_lat', 'Origin_lon', 'Destination_lat',
|
31 |
+
'Destination_lon', 'Trip_distance',
|
32 |
+
'dewpoint_2m_temperature',
|
33 |
+
'minimum_2m_air_temperature',
|
34 |
+
'pickup_weekday', 'pickup_hour',
|
35 |
+
'pickup_week_hour', 'cluster_id',
|
36 |
+
'temperature_range', 'rain']))))
|
37 |
+
except Exception as e:
|
38 |
+
print(f"Error during prediction: {str(e)}")
|
39 |
+
model_output = 0
|
40 |
+
|
41 |
+
output_str = 'Hey there, Your ETA is'
|
42 |
+
dist = 'seconds'
|
43 |
+
|
44 |
+
return f"{output_str} {model_output} {dist}"
|
45 |
+
|
46 |
+
# UI layout
|
47 |
+
with gr.Blocks(theme=gr.themes.Soft()) as app:
|
48 |
+
gr.Markdown("# ETA PREDICTION")
|
49 |
+
gr.Markdown("""This app uses a machine learning model to predict the ETA of trips on the Yassir Hailing App.Refer to the expander at the bottom for more information on the inputs.""")
|
50 |
+
|
51 |
+
with gr.Row():
|
52 |
+
origin_lat = gr.Slider(2.806, 3.373, step=0.001, interactive=True, value=2.806, label='Origin latitude')
|
53 |
+
origin_lon = gr.Slider(36.589, 36.820, step=0.001, interactive=True, value=36.589, label='Origin longitude')
|
54 |
+
Destination_lat = gr.Slider(2.807, 3.381, step=0.001, interactive=True, value=2.810, label='Destination latitude')
|
55 |
+
Destination_lon = gr.Slider(36.592, 36.819, step=0.001, interactive=True, value=36.596, label='Destination longitude')
|
56 |
+
Trip_distance = gr.Slider(0, 62028, step=1, interactive=True, value=1000, label='Trip distance (M)')
|
57 |
+
cluster_id = gr.Dropdown([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], label="Cluster ID", value=4)
|
58 |
+
|
59 |
+
with gr.Column():
|
60 |
+
pickup_weekday = gr.Dropdown([0, 1, 2, 3, 4, 5, 6], value=3, label='Pickup weekday')
|
61 |
+
pickup_hour = gr.Dropdown([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23],
|
62 |
+
value=13, label='Pickup hour')
|
63 |
+
|
64 |
+
with gr.Column():
|
65 |
+
dewpoint_2m_temperature = gr.Slider(279.129, 286.327, step=0.001, interactive=True, value=282.201,
|
66 |
+
label='dewpoint_2m_temperature')
|
67 |
+
minimum_2m_air_temperature = gr.Slider(282.037, 292.543, step=0.01, interactive=True, value=285.203,
|
68 |
+
label='minimum_2m_air_temperature')
|
69 |
+
temperature_range = gr.Slider(1.663, 10.022, step=0.01, interactive=True, value=5, label='temperature_range')
|
70 |
+
rain = gr.Dropdown([0, 1], label='Is it raining (0=No, 1=Yes)')
|
71 |
+
|
72 |
+
with gr.Row():
|
73 |
+
btn = gr.Button("Predict")
|
74 |
+
output = gr.Textbox(label="Prediction")
|
75 |
+
|
76 |
+
# Expander for more info on columns
|
77 |
+
with gr.Accordion("Information on inputs"):
|
78 |
+
gr.Markdown("""These are information on the inputs the app takes for predicting a rides ETA.
|
79 |
+
- Origin latitude: Origin in degree latitude)
|
80 |
+
- Origin longitude: Origin in degree longitude
|
81 |
+
- Destination latitude: Destination latitude
|
82 |
+
- Destination longitude: Destination logitude
|
83 |
+
- Trip distance (M): Distance in meters on a driving route
|
84 |
+
- Cluster ID: Select the cluster within which you started your trip
|
85 |
+
- Pickup weekday: Day of the week
|
86 |
+
Monday=0, Tuesday=1, Wednesday=2, Thursday=3, Friday=4, Saturday=5, Sunday=6
|
87 |
+
- Pickup hour: The hour of the day (24hr clock)
|
88 |
+
- dewpoint_2m_temperature: The temperature at 2 meters above the ground where the air temperature would be
|
89 |
+
low enough for dew to form. It gives an indication of humidity.
|
90 |
+
- minimum_2m_air_temperature: The lowest air temperature recorded at 2 meters above the ground during the specified date.
|
91 |
+
- temperature_range: The air temperature range recorded at 2 meters above the ground on the day
|
92 |
+
- rain: Is it raining? yes=1, no=2
|
93 |
+
""")
|
94 |
+
|
95 |
+
btn.click(fn=predict, inputs=[origin_lat, origin_lon, Destination_lat, Destination_lon,
|
96 |
+
Trip_distance, dewpoint_2m_temperature,
|
97 |
+
minimum_2m_air_temperature, pickup_weekday, pickup_hour,
|
98 |
+
cluster_id, temperature_range,
|
99 |
+
rain], outputs=output)
|
100 |
+
|
101 |
+
app.launch(share=True, debug=True)
|