Spaces:
Running
Running
import gradio as gr | |
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns | |
import pandas as pd | |
from apscheduler.schedulers.background import BackgroundScheduler | |
from huggingface_hub import snapshot_download | |
from src.about import ( | |
CITATION_BUTTON_LABEL, | |
CITATION_BUTTON_TEXT, | |
EVALUATION_QUEUE_TEXT, | |
INTRODUCTION_TEXT, | |
LLM_BENCHMARKS_TEXT, | |
TITLE, | |
EVALUATION_METRIC_TEXT, | |
) | |
from src.display.css_html_js import custom_css | |
from src.display.utils import ( | |
BENCHMARK_COLS, | |
COLS, | |
EVAL_COLS, | |
EVAL_TYPES, | |
TYPES, | |
AutoEvalColumn, | |
ModelType, | |
fields, | |
WeightType, | |
Precision, | |
NUMERIC_INTERVALS, | |
QUOTACOLS, | |
QUOTATYPES, | |
AutoEvalColumnQuota, | |
BENCHMARK_QUOTACOLS | |
) | |
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, DYNAMIC_INFO_REPO, DYNAMIC_INFO_FILE_PATH, DYNAMIC_INFO_PATH, IS_PUBLIC, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN | |
from src.populate import get_evaluation_queue_df, get_leaderboard_df, get_leaderboard_df_quota | |
from src.submission.submit import add_new_eval | |
from src.scripts.update_all_request_files import update_dynamic_files | |
from src.tools.collections import update_collections | |
from src.tools.datastatics import get_statics | |
#from src.tools.plots import ( | |
# create_plot_df, | |
# create_scores_df, | |
#) | |
def restart_space(): | |
API.restart_space(repo_id=REPO_ID, token=TOKEN) | |
def init_space(): | |
print("begin init space") | |
### Space initialisation | |
try: | |
print(EVAL_REQUESTS_PATH) | |
snapshot_download( | |
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN | |
) | |
except Exception: | |
restart_space() | |
try: | |
print(EVAL_RESULTS_PATH) | |
snapshot_download( | |
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN | |
) | |
except Exception: | |
restart_space() | |
print("QUOTACOLS+COLS",list(set(QUOTACOLS+COLS))) | |
raw_data, original_df = get_leaderboard_df( | |
results_path=EVAL_RESULTS_PATH, | |
requests_path=EVAL_REQUESTS_PATH, | |
dynamic_path=DYNAMIC_INFO_FILE_PATH, | |
#cols=COLS, | |
#benchmark_cols=BENCHMARK_COLS, | |
cols=list(set(QUOTACOLS+COLS)), | |
benchmark_cols=list(set(BENCHMARK_QUOTACOLS+BENCHMARK_COLS)) | |
) | |
#update_collections(original_df.copy()) | |
leaderboard_df = original_df.copy() | |
raw_data_quota, original_df_quota = get_leaderboard_df( | |
results_path=EVAL_RESULTS_PATH, | |
requests_path=EVAL_REQUESTS_PATH, | |
dynamic_path=DYNAMIC_INFO_FILE_PATH, | |
cols=list(set(QUOTACOLS+COLS)), | |
benchmark_cols=list(set(BENCHMARK_QUOTACOLS+BENCHMARK_COLS)) | |
) | |
#update_collections(original_df.copy()) | |
leaderboard_df_quota = original_df_quota.copy() | |
#plot_df = create_plot_df(create_scores_df(raw_data)) | |
( | |
finished_eval_queue_df, | |
running_eval_queue_df, | |
pending_eval_queue_df, | |
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS) | |
#return leaderboard_df, original_df, plot_df, finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df | |
return leaderboard_df, original_df, leaderboard_df_quota, original_df_quota,finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df | |
leaderboard_df, original_df, leaderboard_df_quota, original_df_quota, finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = init_space() | |
# Searching and filtering | |
#type_query: list, | |
#precision_query: str, | |
#size_query: list, | |
#hide_models: list, | |
def update_table( | |
hidden_df: pd.DataFrame, | |
columns: list, | |
query: str, | |
): | |
print("query", query) | |
#filtered_df = filter_models(df=hidden_df, type_query=type_query, size_query=size_query, precision_query=precision_query, hide_models=hide_models) | |
filtered_df = filter_queries(query, hidden_df) | |
df = select_columns(filtered_df, columns) | |
return df | |
def load_query(request: gr.Request): # triggered only once at startup => read query parameter if it exists | |
query = request.query_params.get("query") or "" | |
return query, query # return one for the "search_bar", one for a hidden component that triggers a reload only if value has changed | |
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame: | |
return df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))] | |
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame: | |
always_here_cols = [c.name for c in fields(AutoEvalColumn) if c.never_hidden] | |
dummy_col = [AutoEvalColumn.dummy.name] | |
#AutoEvalColumn.model_type_symbol.name, | |
#AutoEvalColumn.model.name, | |
# We use COLS to maintain sorting | |
filtered_df = df[ | |
always_here_cols + [c for c in COLS if c in df.columns and c in columns] + dummy_col | |
] | |
return filtered_df | |
def filter_queries(query: str, filtered_df: pd.DataFrame): | |
"""Added by Abishek""" | |
final_df = [] | |
if query != "": | |
queries = [q.strip() for q in query.split(";")] | |
for _q in queries: | |
_q = _q.strip() | |
if _q != "": | |
temp_filtered_df = search_table(filtered_df, _q) | |
if len(temp_filtered_df) > 0: | |
final_df.append(temp_filtered_df) | |
if len(final_df) > 0: | |
filtered_df = pd.concat(final_df) | |
filtered_df = filtered_df.drop_duplicates( | |
subset=[AutoEvalColumn.model.name, AutoEvalColumn.precision.name, AutoEvalColumn.revision.name] | |
) | |
return filtered_df | |
def update_table_q( | |
hidden_df: pd.DataFrame, | |
columns: list, | |
query: str, | |
): | |
filtered_df = filter_queriesq(query, hidden_df) | |
df = select_columnsq(filtered_df, columns) | |
return df | |
def search_tableq(df: pd.DataFrame, query: str) -> pd.DataFrame: | |
return df[(df[AutoEvalColumnQuota.dummy.name].str.contains(query, case=False))] | |
def select_columnsq(df: pd.DataFrame, columns: list) -> pd.DataFrame: | |
always_here_cols = [c.name for c in fields(AutoEvalColumnQuota) if c.never_hidden] | |
dummy_col = [AutoEvalColumnQuota.dummy.name] | |
# We use COLS to maintain sorting | |
filtered_df = df[ | |
always_here_cols + [c for c in QUOTACOLS if c in df.columns and c in columns] + dummy_col | |
] | |
return filtered_df | |
def filter_queriesq(query: str, filtered_df: pd.DataFrame): | |
"""Added by Abishek""" | |
final_df = [] | |
if query != "": | |
queries = [q.strip() for q in query.split(";")] | |
for _q in queries: | |
_q = _q.strip() | |
if _q != "": | |
temp_filtered_df = search_tableq(filtered_df, _q) | |
if len(temp_filtered_df) > 0: | |
final_df.append(temp_filtered_df) | |
if len(final_df) > 0: | |
filtered_df = pd.concat(final_df) | |
filtered_df = filtered_df.drop_duplicates( | |
subset=[AutoEvalColumnQuota.model.name, AutoEvalColumnQuota.precision.name, AutoEvalColumnQuota.revision.name] | |
) | |
return filtered_df | |
def filter_models( | |
df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, hide_models: list | |
) -> pd.DataFrame: | |
# Show all models | |
if "Private or deleted" in hide_models: | |
filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True] | |
else: | |
filtered_df = df | |
if "Contains a merge/moerge" in hide_models: | |
filtered_df = filtered_df[filtered_df[AutoEvalColumn.merged.name] == False] | |
if "MoE" in hide_models: | |
filtered_df = filtered_df[filtered_df[AutoEvalColumn.moe.name] == False] | |
if "Flagged" in hide_models: | |
filtered_df = filtered_df[filtered_df[AutoEvalColumn.flagged.name] == False] | |
type_emoji = [t[0] for t in type_query] | |
filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)] | |
filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])] | |
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query])) | |
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce") | |
mask = params_column.apply(lambda x: any(numeric_interval.contains(x))) | |
filtered_df = filtered_df.loc[mask] | |
return filtered_df | |
leaderboard_df = filter_models( | |
df=leaderboard_df, | |
type_query=[t.to_str(" : ") for t in ModelType], | |
size_query=list(NUMERIC_INTERVALS.keys()), | |
precision_query=[i.value.name for i in Precision], | |
hide_models=[], # Deleted, merges, flagged, MoEs | |
) | |
leaderboard_df_quota = filter_models( | |
df=leaderboard_df_quota, | |
type_query=[t.to_str(" : ") for t in ModelType], | |
size_query=list(NUMERIC_INTERVALS.keys()), | |
precision_query=[i.value.name for i in Precision], | |
hide_models=[], # Deleted, merges, flagged, MoEs | |
) | |
demo = gr.Blocks(css=custom_css) | |
with demo: | |
gr.HTML(TITLE) | |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") | |
with gr.Tabs(elem_classes="tab-buttons") as tabs: | |
with gr.TabItem("🏅 EmbodiedVerse-Open", elem_id="vlm-benchmark-tab-table", id=0): | |
#leaderboard = init_leaderboard(LEADERBOARD_DF) | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(): | |
search_bar = gr.Textbox( | |
placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...", | |
show_label=False, | |
elem_id="search-bar", | |
) | |
with gr.Row(): | |
shown_columns = gr.CheckboxGroup( | |
choices=[ | |
c.name | |
for c in fields(AutoEvalColumn) | |
if not c.hidden and not c.never_hidden and not c.dummy | |
], | |
value=[ | |
c.name | |
for c in fields(AutoEvalColumn) | |
if c.displayed_by_default and not c.hidden and not c.never_hidden | |
], | |
label="Select columns to show", | |
elem_id="column-select", | |
interactive=True, | |
) | |
leaderboard_table = gr.components.Dataframe( | |
value=leaderboard_df[ | |
[c.name for c in fields(AutoEvalColumn) if c.never_hidden] | |
+ shown_columns.value | |
+ [AutoEvalColumnQuota.dummy.name] | |
], | |
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value, | |
datatype=TYPES, | |
elem_id="leaderboard-table", | |
interactive=False, | |
visible=True, | |
#column_widths=["2%", "33%"] | |
) | |
# Dummy leaderboard for handling the case when the user uses backspace key | |
hidden_leaderboard_table_for_search = gr.components.Dataframe( | |
value=original_df[COLS], | |
#value=leaderboard_df[COLS], | |
headers=COLS, | |
datatype=TYPES, | |
visible=False, | |
) | |
search_bar.submit( | |
update_table, | |
[ | |
hidden_leaderboard_table_for_search, | |
shown_columns, | |
search_bar, | |
], | |
leaderboard_table, | |
) | |
# Define a hidden component that will trigger a reload only if a query parameter has been set | |
hidden_search_bar = gr.Textbox(value="", visible=False) | |
hidden_search_bar.change( | |
update_table, | |
[ | |
hidden_leaderboard_table_for_search, | |
shown_columns, | |
search_bar, | |
], | |
leaderboard_table, | |
) | |
# Check query parameter once at startup and update search bar + hidden component | |
demo.load(load_query, inputs=[], outputs=[search_bar, hidden_search_bar]) | |
#for selector in [shown_columns, filter_columns_type, filter_columns_precision, filter_columns_size, hide_models]: | |
for selector in [shown_columns]:#, filter_columns_type, filter_columns_precision, filter_columns_size]:#, hide_models]: | |
selector.change( | |
update_table, | |
[ | |
hidden_leaderboard_table_for_search, | |
shown_columns, | |
search_bar, | |
], | |
leaderboard_table, | |
queue=True, | |
) | |
with gr.TabItem("🏅 EmbodiedVerse-Open-Sampled", elem_id="vlm-quota-benchmark-tab-table", id=1): | |
#leaderboard = init_leaderboard(LEADERBOARD_DF) | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(): | |
search_bar = gr.Textbox( | |
placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...", | |
show_label=False, | |
elem_id="search-bar", | |
) | |
with gr.Row(): | |
shown_columns = gr.CheckboxGroup( | |
choices=[ | |
c.name | |
for c in fields(AutoEvalColumnQuota) | |
if not c.hidden and not c.never_hidden and not c.dummy | |
], | |
value=[ | |
c.name | |
for c in fields(AutoEvalColumnQuota) | |
if c.displayed_by_default and not c.hidden and not c.never_hidden | |
], | |
label="Select columns to show", | |
elem_id="column-select", | |
interactive=True, | |
) | |
leaderboard_table = gr.components.Dataframe( | |
value=leaderboard_df_quota[ | |
[c.name for c in fields(AutoEvalColumnQuota) if c.never_hidden] | |
+ shown_columns.value | |
+ [AutoEvalColumnQuota.dummy.name] | |
], | |
headers=[c.name for c in fields(AutoEvalColumnQuota) if c.never_hidden] + shown_columns.value, | |
datatype=QUOTATYPES, | |
elem_id="leaderboard-table", | |
interactive=False, | |
visible=True, | |
#column_widths=["2%", "33%"] | |
) | |
# Dummy leaderboard for handling the case when the user uses backspace key | |
hidden_leaderboard_table_for_search = gr.components.Dataframe( | |
value=original_df_quota[QUOTACOLS], | |
headers=QUOTACOLS, | |
datatype=QUOTATYPES, | |
visible=False, | |
) | |
search_bar.submit( | |
update_table_q, | |
[ | |
hidden_leaderboard_table_for_search, | |
shown_columns, | |
search_bar, | |
], | |
leaderboard_table, | |
) | |
# Define a hidden component that will trigger a reload only if a query parameter has been set | |
hidden_search_bar = gr.Textbox(value="", visible=False) | |
hidden_search_bar.change( | |
update_table_q, | |
[ | |
hidden_leaderboard_table_for_search, | |
shown_columns, | |
search_bar, | |
], | |
leaderboard_table, | |
) | |
# Check query parameter once at startup and update search bar + hidden component | |
demo.load(load_query, inputs=[], outputs=[search_bar, hidden_search_bar]) | |
#for selector in [shown_columns, filter_columns_type, filter_columns_precision, filter_columns_size, hide_models]: | |
for selector in [shown_columns]:#, filter_columns_type, filter_columns_precision, filter_columns_size]: #, hide_models]: | |
selector.change( | |
update_table_q, | |
[ | |
hidden_leaderboard_table_for_search, | |
shown_columns, | |
search_bar, | |
], | |
leaderboard_table, | |
queue=True, | |
) | |
gr.Markdown(EVALUATION_METRIC_TEXT, elem_classes="markdown-text") | |
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2): | |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text") | |
with gr.Row(): | |
with gr.Accordion("📙 Citation", open=False): | |
citation_button = gr.Textbox( | |
value=CITATION_BUTTON_TEXT, | |
label=CITATION_BUTTON_LABEL, | |
lines=20, | |
elem_id="citation-button", | |
show_copy_button=True, | |
) | |
scheduler = BackgroundScheduler() | |
scheduler.add_job(restart_space, "interval", seconds=1800) | |
scheduler.add_job(update_dynamic_files, "cron", minute=30) # launched every hour on the hour | |
scheduler.add_job(get_statics, 'cron', hour=12, minute=15, timezone='Asia/Shanghai') # 添加定时任务,每天0:30执行一次 | |
scheduler.start() | |
demo.queue(default_concurrency_limit=40).launch() | |