lixuejing commited on
Commit
3003ba0
·
1 Parent(s): 8ccc232
app.py ADDED
@@ -0,0 +1,337 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
3
+ import pandas as pd
4
+ from apscheduler.schedulers.background import BackgroundScheduler
5
+ from huggingface_hub import snapshot_download
6
+
7
+ from src.about import (
8
+ CITATION_BUTTON_LABEL,
9
+ CITATION_BUTTON_TEXT,
10
+ EVALUATION_QUEUE_TEXT,
11
+ INTRODUCTION_TEXT,
12
+ LLM_BENCHMARKS_TEXT,
13
+ TITLE,
14
+ )
15
+ from src.display.css_html_js import custom_css
16
+ from src.display.utils import (
17
+ BENCHMARK_COLS,
18
+ COLS,
19
+ EVAL_COLS,
20
+ EVAL_TYPES,
21
+ TYPES,
22
+ AutoEvalColumn,
23
+ ModelType,
24
+ fields,
25
+ WeightType,
26
+ Precision,
27
+ NUMERIC_INTERVALS
28
+ )
29
+ from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, DYNAMIC_INFO_REPO, DYNAMIC_INFO_FILE_PATH, DYNAMIC_INFO_PATH, IS_PUBLIC, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
30
+ from src.populate import get_evaluation_queue_df, get_leaderboard_df
31
+ from src.submission.submit import add_new_eval
32
+ from src.scripts.update_all_request_files import update_dynamic_files
33
+ from src.tools.collections import update_collections
34
+ from src.tools.datastatics import get_statics
35
+ from src.tools.plots import (
36
+ create_metric_plot_obj,
37
+ create_plot_df,
38
+ create_scores_df,
39
+ )
40
+
41
+ def restart_space():
42
+ API.restart_space(repo_id=REPO_ID, token=TOKEN)
43
+
44
+
45
+ def init_space():
46
+ print("begin init space")
47
+ ### Space initialisation
48
+ try:
49
+ print(EVAL_REQUESTS_PATH)
50
+ snapshot_download(
51
+ repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
52
+ )
53
+ except Exception:
54
+ restart_space()
55
+ try:
56
+ print(EVAL_RESULTS_PATH)
57
+ snapshot_download(
58
+ repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
59
+ )
60
+ except Exception:
61
+ restart_space()
62
+
63
+ raw_data, original_df = get_leaderboard_df(
64
+ #leaderboard_df = get_leaderboard_df(
65
+ results_path=EVAL_RESULTS_PATH,
66
+ requests_path=EVAL_REQUESTS_PATH,
67
+ dynamic_path=DYNAMIC_INFO_FILE_PATH,
68
+ cols=COLS,
69
+ benchmark_cols=BENCHMARK_COLS
70
+ )
71
+ update_collections(original_df.copy())
72
+ leaderboard_df = original_df.copy()
73
+
74
+ plot_df = create_plot_df(create_scores_df(raw_data))
75
+
76
+ (
77
+ finished_eval_queue_df,
78
+ running_eval_queue_df,
79
+ pending_eval_queue_df,
80
+ ) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
81
+
82
+ return leaderboard_df, original_df, plot_df, finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df
83
+
84
+ leaderboard_df, original_df, plot_df, finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = init_space()
85
+ #return leaderboard_df, finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df
86
+
87
+ #leaderboard_df, finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = init_space()
88
+
89
+
90
+ # Searching and filtering
91
+ def update_table(
92
+ hidden_df: pd.DataFrame,
93
+ columns: list,
94
+ type_query: list,
95
+ precision_query: str,
96
+ size_query: list,
97
+ hide_models: list,
98
+ query: str,
99
+ ):
100
+ filtered_df = filter_models(df=hidden_df, type_query=type_query, size_query=size_query, precision_query=precision_query, hide_models=hide_models)
101
+ filtered_df = filter_queries(query, filtered_df)
102
+ df = select_columns(filtered_df, columns)
103
+ return df
104
+
105
+
106
+ def load_query(request: gr.Request): # triggered only once at startup => read query parameter if it exists
107
+ query = request.query_params.get("query") or ""
108
+ return query, query # return one for the "search_bar", one for a hidden component that triggers a reload only if value has changed
109
+
110
+
111
+ def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
112
+ return df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))]
113
+
114
+
115
+ def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
116
+ always_here_cols = [c.name for c in fields(AutoEvalColumn) if c.never_hidden]
117
+ dummy_col = [AutoEvalColumn.dummy.name]
118
+ #AutoEvalColumn.model_type_symbol.name,
119
+ #AutoEvalColumn.model.name,
120
+ # We use COLS to maintain sorting
121
+ filtered_df = df[
122
+ always_here_cols + [c for c in COLS if c in df.columns and c in columns] + dummy_col
123
+ ]
124
+ return filtered_df
125
+
126
+
127
+ def filter_queries(query: str, filtered_df: pd.DataFrame):
128
+ """Added by Abishek"""
129
+ final_df = []
130
+ if query != "":
131
+ queries = [q.strip() for q in query.split(";")]
132
+ for _q in queries:
133
+ _q = _q.strip()
134
+ if _q != "":
135
+ temp_filtered_df = search_table(filtered_df, _q)
136
+ if len(temp_filtered_df) > 0:
137
+ final_df.append(temp_filtered_df)
138
+ if len(final_df) > 0:
139
+ filtered_df = pd.concat(final_df)
140
+ filtered_df = filtered_df.drop_duplicates(
141
+ subset=[AutoEvalColumn.model.name, AutoEvalColumn.precision.name, AutoEvalColumn.revision.name]
142
+ )
143
+
144
+ return filtered_df
145
+
146
+
147
+ def filter_models(
148
+ df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, hide_models: list
149
+ ) -> pd.DataFrame:
150
+ # Show all models
151
+ if "Private or deleted" in hide_models:
152
+ filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]
153
+ else:
154
+ filtered_df = df
155
+
156
+ if "Contains a merge/moerge" in hide_models:
157
+ filtered_df = filtered_df[filtered_df[AutoEvalColumn.merged.name] == False]
158
+
159
+ if "MoE" in hide_models:
160
+ filtered_df = filtered_df[filtered_df[AutoEvalColumn.moe.name] == False]
161
+
162
+ if "Flagged" in hide_models:
163
+ filtered_df = filtered_df[filtered_df[AutoEvalColumn.flagged.name] == False]
164
+
165
+ type_emoji = [t[0] for t in type_query]
166
+ filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
167
+ filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
168
+
169
+ numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
170
+ params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
171
+ mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
172
+ filtered_df = filtered_df.loc[mask]
173
+
174
+ return filtered_df
175
+
176
+ leaderboard_df = filter_models(
177
+ df=leaderboard_df,
178
+ type_query=[t.to_str(" : ") for t in ModelType],
179
+ size_query=list(NUMERIC_INTERVALS.keys()),
180
+ precision_query=[i.value.name for i in Precision],
181
+ hide_models=[], # Deleted, merges, flagged, MoEs
182
+ )
183
+
184
+
185
+
186
+ demo = gr.Blocks(css=custom_css)
187
+ with demo:
188
+ gr.HTML(TITLE)
189
+ gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
190
+
191
+ with gr.Tabs(elem_classes="tab-buttons") as tabs:
192
+ with gr.TabItem("🏅 VLM Benchmark", elem_id="vlm-benchmark-tab-table", id=0):
193
+ #leaderboard = init_leaderboard(LEADERBOARD_DF)
194
+ with gr.Row():
195
+ with gr.Column():
196
+ with gr.Row():
197
+ search_bar = gr.Textbox(
198
+ placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...",
199
+ show_label=False,
200
+ elem_id="search-bar",
201
+ )
202
+ with gr.Row():
203
+ shown_columns = gr.CheckboxGroup(
204
+ choices=[
205
+ c.name
206
+ for c in fields(AutoEvalColumn)
207
+ if not c.hidden and not c.never_hidden and not c.dummy
208
+ ],
209
+ value=[
210
+ c.name
211
+ for c in fields(AutoEvalColumn)
212
+ if c.displayed_by_default and not c.hidden and not c.never_hidden
213
+ ],
214
+ label="Select columns to show",
215
+ elem_id="column-select",
216
+ interactive=True,
217
+ )
218
+ with gr.Row():
219
+ hide_models = gr.CheckboxGroup(
220
+ label="Hide models",
221
+ choices = ["Private or deleted", "Contains a merge/moerge", "Flagged", "MoE"],
222
+ value=[],
223
+ interactive=True
224
+ )
225
+ with gr.Column(min_width=320):
226
+ #with gr.Box(elem_id="box-filter"):
227
+ filter_columns_type = gr.CheckboxGroup(
228
+ label="Model types",
229
+ choices=[t.to_str() for t in ModelType],
230
+ value=[t.to_str() for t in ModelType],
231
+ interactive=True,
232
+ elem_id="filter-columns-type",
233
+ )
234
+ filter_columns_precision = gr.CheckboxGroup(
235
+ label="Precision",
236
+ choices=[i.value.name for i in Precision],
237
+ value=[i.value.name for i in Precision],
238
+ interactive=True,
239
+ elem_id="filter-columns-precision",
240
+ )
241
+ filter_columns_size = gr.CheckboxGroup(
242
+ label="Model sizes (in billions of parameters)",
243
+ choices=list(NUMERIC_INTERVALS.keys()),
244
+ value=list(NUMERIC_INTERVALS.keys()),
245
+ interactive=True,
246
+ elem_id="filter-columns-size",
247
+ )
248
+
249
+ leaderboard_table = gr.components.Dataframe(
250
+ value=leaderboard_df[
251
+ [c.name for c in fields(AutoEvalColumn) if c.never_hidden]
252
+ + shown_columns.value
253
+ + [AutoEvalColumn.dummy.name]
254
+ ],
255
+ headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
256
+ datatype=TYPES,
257
+ elem_id="leaderboard-table",
258
+ interactive=False,
259
+ visible=True,
260
+ #column_widths=["2%", "33%"]
261
+ )
262
+
263
+ # Dummy leaderboard for handling the case when the user uses backspace key
264
+ hidden_leaderboard_table_for_search = gr.components.Dataframe(
265
+ value=original_df[COLS],
266
+ #value=leaderboard_df[COLS],
267
+ headers=COLS,
268
+ datatype=TYPES,
269
+ visible=False,
270
+ )
271
+ search_bar.submit(
272
+ update_table,
273
+ [
274
+ hidden_leaderboard_table_for_search,
275
+ shown_columns,
276
+ filter_columns_type,
277
+ filter_columns_precision,
278
+ filter_columns_size,
279
+ hide_models,
280
+ search_bar,
281
+ ],
282
+ leaderboard_table,
283
+ )
284
+
285
+ # Define a hidden component that will trigger a reload only if a query parameter has been set
286
+ hidden_search_bar = gr.Textbox(value="", visible=False)
287
+ hidden_search_bar.change(
288
+ update_table,
289
+ [
290
+ hidden_leaderboard_table_for_search,
291
+ shown_columns,
292
+ filter_columns_type,
293
+ filter_columns_precision,
294
+ filter_columns_size,
295
+ hide_models,
296
+ search_bar,
297
+ ],
298
+ leaderboard_table,
299
+ )
300
+ # Check query parameter once at startup and update search bar + hidden component
301
+ demo.load(load_query, inputs=[], outputs=[search_bar, hidden_search_bar])
302
+
303
+ for selector in [shown_columns, filter_columns_type, filter_columns_precision, filter_columns_size, hide_models]:
304
+ selector.change(
305
+ update_table,
306
+ [
307
+ hidden_leaderboard_table_for_search,
308
+ shown_columns,
309
+ filter_columns_type,
310
+ filter_columns_precision,
311
+ filter_columns_size,
312
+ hide_models,
313
+ search_bar,
314
+ ],
315
+ leaderboard_table,
316
+ queue=True,
317
+ )
318
+ with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
319
+ gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
320
+
321
+
322
+ with gr.Row():
323
+ with gr.Accordion("📙 Citation", open=False):
324
+ citation_button = gr.Textbox(
325
+ value=CITATION_BUTTON_TEXT,
326
+ label=CITATION_BUTTON_LABEL,
327
+ lines=20,
328
+ elem_id="citation-button",
329
+ show_copy_button=True,
330
+ )
331
+
332
+ scheduler = BackgroundScheduler()
333
+ scheduler.add_job(restart_space, "interval", seconds=1800)
334
+ scheduler.add_job(update_dynamic_files, "cron", minute=30) # launched every hour on the hour
335
+ scheduler.add_job(get_statics, 'cron', hour=12, minute=15, timezone='Asia/Shanghai') # 添加定时任务,每天0:30执行一次
336
+ scheduler.start()
337
+ demo.queue(default_concurrency_limit=40).launch()
src/__pycache__/envs.cpython-313.pyc ADDED
Binary file (1.77 kB). View file
 
src/about.py ADDED
@@ -0,0 +1,222 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from dataclasses import dataclass
2
+ from enum import Enum
3
+
4
+ @dataclass
5
+ class Task:
6
+ benchmark: str
7
+ metric: str
8
+ col_name: str
9
+
10
+
11
+ # Select your tasks here
12
+ # ---------------------------------------------------
13
+ class Tasks(Enum):
14
+ # task_key in the json file, metric_key in the json file, name to display in the leaderboard
15
+ Where2Place = Task("Where2Place", "overall", "Where2Place")
16
+ blink_val_ev= Task("blink_val_ev", "overall", "blink_val_ev")
17
+ cv_bench_test = Task("cv_bench_test", "overall", "cv_bench_test")
18
+ robo_spatial_home_all = Task("robo_spatial_home_all", "overall", "robo_spatial_home_all")
19
+ embspatial_bench = Task("embspatial_bench", "overall", "embspatial_bench")
20
+ all_angles_bench = Task("all_angles_bench", "overall", "all_angles_bench")
21
+ vsi_bench_tiny = Task("vsi_bench_tiny", "overall", "vsi_bench_tiny")
22
+ SAT = Task("SAT", "overall", "SAT")
23
+ egoplan_bench2 = Task("egoplan_bench2", "overall", "egoplan_bench2")
24
+ erqa = Task("erqa", "overall", "erqa")
25
+
26
+ NUM_FEWSHOT = 0 # Change with your few shot
27
+ # ---------------------------------------------------
28
+
29
+
30
+
31
+ # Your leaderboard name
32
+ TITLE = """<h1 align="center" id="space-title">Open FlagEval-VLM Leaderboard</h1>"""
33
+
34
+ # What does your leaderboard evaluate?
35
+
36
+ INTRODUCTION_TEXT = """
37
+ 欢迎使用FlagEval-Embodied Verse!
38
+ FlagEval-Embodied Verse 旨在通过FlagEval具身工具链跟踪、排名和评估具身大模型(Embodied model),其中FlagEvalMM提供了多模态评估架构,Embodied Verse构建了一种基于具身智能高质量评测数据集的能力体系,Leaderboard则通过榜单实时跟踪并呈现不同具身大模型综合能力。
39
+
40
+ Welcome to the FlagEval-Embodied Verse!
41
+ FlagEval-Embodied Verse aims to track, rank, and evaluate embodied large models (Embodied models) through the FlagEval embodied toolchain.
42
+ FlagEvalMM provides a multimodal evaluation framework, while Embodied Verse builds a capability system based on high-quality evaluation datasets for embodied intelligence. The Leaderboard tracks and presents the comprehensive capabilities of different embodied large models in real time through a leaderboard.
43
+ """
44
+ # Which evaluations are you running? how can people reproduce what you have?
45
+ LLM_BENCHMARKS_TEXT = f"""
46
+
47
+ # The Goal of FlagEval - Embodied Verse
48
+
49
+ 感谢您积极的参与评测,在未来,我们会持续推动 FlagEval - Embodied Verse 更加完善,维护生态开放,欢迎开发者参与评测方法、工具和数据集的探讨,让我们一起建设更加科学、开放的具身评测工具链。
50
+
51
+ Thanks for your active participation in the evaluation. In the future, we will continue to promote FlagEval - Embodied Verse to be more perfect and maintain the openness of the ecosystem, and we welcome developers to participate in the discussion of evaluation methodology, tools and datasets, so that we can build a more scientific and open embodied evaluation toolchain together.
52
+
53
+ # Context
54
+
55
+ FlagEval-Embodied Verse是科学、全面的具身评测工具链,具体包括FlagEvalMM多模态评估框架、Embodied Verse具身智能高质量评测数据集以及Leaderboard具身模型能力可视化榜单。我们希望能够推动更加开放的生态,让具身智能大模型开发者参与进来,为推动具身智能大模型进步做出相应的贡献。为了实现公平性的目标,所有模型都在 FlagEvalMM框架下使用标准化 GPU 和统一环境进行评估,以确保公平性。
56
+
57
+ FlagEval-Embodied Verse is a scientific and comprehensive embodied evaluation toolchain, which specifically includes the FlagEvalMM multimodal evaluation framework, the Embodied Verse high-quality embodied intelligence evaluation dataset, and the Leaderboard for visualizing the capabilities of embodied models.
58
+
59
+ We hope to promote a more open ecosystem for embodied model developers to participate and contribute accordingly to the advancement of embodied models. To achieve the goal of fairness, all models are evaluated all models are evaluated under the FlagEvalMM framework using standardized GPUs and a unified environment to ensure fairness.
60
+
61
+ #How it works
62
+
63
+ ## Embodied verse tool - FlagEvalMM
64
+ FlagEvalMM是一个开源评估框架,旨在全面评估多模态模型,其提供了一种标准化的方法来评估跨各种任务和指标使用多种模式(文本、图像、视频)的模型。
65
+
66
+ - 灵活的架构:支持多个多模态模型和评估任务,包括VQA、图像检索、文本到图像等。
67
+ - 全面的基准与度量:支持最新的和常用的基准和度量。
68
+ - 广泛的模型支持:model_zoo为广泛流行的多模态模型(包括QWenVL和LLaVA)提供了推理支持。此外,它还提供了与基于API的模型(如GPT、Claude和HuanYuan)的无缝集成。
69
+ - 可扩展的设计:易于扩展,可合并新的模型、基准和评估指标。
70
+
71
+ FlagEvalMM is an open-source evaluation framework designed to comprehensively assess multimodal models. It provides a standardized way to evaluate models that work with multiple modalities (text, images, video) across various tasks and metrics.
72
+
73
+ - Flexible Architecture: Support for multiple multimodal models and evaluation tasks, including: VQA, image retrieval, text-to-image, etc.
74
+ - Comprehensive Benchmarks and Metrics: Support new and commonly used benchmarks and metrics.
75
+ - Extensive Model Support: The model_zoo provides inference support for a wide range of popular multimodal models including QWenVL and LLaVA. Additionally, it offers seamless integration with API-based models such as GPT, Claude, and HuanYuan.
76
+ - Extensible Design: Easily extendable to incorporate new models, benchmarks, and evaluation metrics.
77
+
78
+ # Embodied verse
79
+
80
+ ## Details and logs
81
+ You can find:
82
+ - detailed numerical results in the results Hugging Face dataset: https://huggingface.co/datasets/open-cn-llm-leaderboard/EmbodiedVerse_results
83
+ - community queries and running status in the requests Hugging Face dataset: https://huggingface.co/datasets/open-cn-llm-leaderboard/EmbodiedVerse_requests
84
+
85
+ ## Useful links
86
+ - [FlagEvalMM](https://github.com/flageval-baai/FlagEvalMM)
87
+ - [FlagEval](https://flageval.baai.ac.cn/#/home)
88
+ - [VLM Leaderboard](https://huggingface.co/spaces/BAAI/open_flageval_vlm_leaderboard)
89
+
90
+ """
91
+
92
+ EVALUATION_QUEUE_TEXT = """
93
+ ## Evaluation Queue for the FlagEval VLM Leaderboard
94
+ Models added here will be automatically evaluated on the FlagEval cluster.
95
+
96
+ Currently, we offer two methods for model evaluation, including API calls and private deployments:
97
+ 1. If you choose to evaluate via API call, you need to provide the Model interface, name and corresponding API key.
98
+ 2. If you choose to do open source model evaluation directly through huggingface, you don't need to fill in the Model online api url and Model online api key.
99
+
100
+ ## Open API model Integration Documentation
101
+
102
+ For models accessed via API calls (such as OpenAI API, Anthropic API, etc.), the integration process is straightforward and only requires providing necessary configuration information.
103
+ 1. model_name: Name of the model to use
104
+ 2. api_key: API access key
105
+ 3. api_base: Base URL for the API service
106
+
107
+ ## Adding a Custom Model to the Platform
108
+
109
+ This guide explains how to integrate your custom model into the platform by implementing a model adapter and run.sh script. We'll use the Qwen-VL implementation as a reference example.
110
+
111
+ ### Overview
112
+
113
+ To add your custom model, you need to:
114
+ 1. Create a custom dataset class
115
+ 2. Implement a model adapter class
116
+ 3. Set up the initialization and inference pipeline
117
+
118
+ ### Step-by-Step Implementation
119
+
120
+ Here is an example:[model_adapter.py](https://github.com/flageval-baai/FlagEvalMM/blob/main/model_zoo/vlm/qwen_vl/model_adapter.py)
121
+
122
+ #### 1. Create Preprocess Custom Dataset Class
123
+
124
+ Inherit from `ServerDataset` to handle data loading:
125
+ ```python
126
+ # model_adapter.py
127
+ class CustomDataset(ServerDataset):
128
+ def __getitem__(self, index):
129
+ data = self.get_data(index)
130
+ question_id = data["question_id"]
131
+ img_path = data["img_path"]
132
+ qs = data["question"]
133
+ qs, idx = process_images_symbol(qs)
134
+ idx = set(idx)
135
+ img_path_idx = []
136
+ for i in idx:
137
+ if i < len(img_path):
138
+ img_path_idx.append(img_path[i])
139
+ else:
140
+ print("[warning] image index out of range")
141
+ return question_id, img_path_idx, qs
142
+ ```
143
+
144
+ The function `get_data` returns a structure like this:
145
+ ```python
146
+ {
147
+ "img_path": "A list where each element is an absolute path to an image that can be read directly using PIL, cv2, etc.",
148
+ "question": "A string containing the question, where image positions are marked with <image1> <image2>",
149
+ "question_id": "question_id",
150
+ "type": "A string indicating the type of question"
151
+ }
152
+ ```
153
+
154
+ #### 2. Implement Model Adapter
155
+
156
+ Inherit from `BaseModelAdapter` and implement the required methods:
157
+ 1. model_init: is responsible for model initialization and serves as the entry point for model loading and setup.
158
+ 2. run_one_task: implements the inference pipeline, handling data processing and result generation for a single evaluation task.
159
+ ```python
160
+ # model_adapter.py
161
+ class ModelAdapter(BaseModelAdapter):
162
+ def model_init(self, task_info: Dict):
163
+ ckpt_path = task_info["model_path"]
164
+ '''
165
+ Initialize the model and processor here.
166
+ Load your pre-trained model and any required processing tools using the provided checkpoint path.
167
+ '''
168
+
169
+ def run_one_task(self, task_name: str, meta_info: Dict[str, Any]):
170
+ results = []
171
+ cnt = 0
172
+
173
+ data_loader = self.create_data_loader(
174
+ CustomDataset, task_name, batch_size=1, num_workers=0
175
+ )
176
+
177
+ for question_id, img_path, qs in data_loader:
178
+
179
+ '''
180
+ Perform model inference here.
181
+ Use the model to generate the 'answer' variable for the given inputs (e.g., question_id, image path, question).
182
+ '''
183
+
184
+ results.append(
185
+ {"question_id": question_id, "answer": answer}
186
+ )
187
+
188
+ self.save_result(results, meta_info, rank=rank)
189
+ '''
190
+ Save the inference results.
191
+ Use the provided meta_info and rank parameters to manage result storage as needed.
192
+ '''
193
+ ```
194
+ Note:
195
+ `results` is a list of dictionaries
196
+ Each dictionary must contain two keys:
197
+ ```python
198
+ question_id: identifies the specific question
199
+ answer: contains the model's prediction/output
200
+ ```
201
+ After collecting all results, they are saved using `save_result()`
202
+
203
+ #### 3. Launch Script (run.sh)
204
+ run.sh is the entry script for launching model evaluation, used to set environment variables and start the evaluation program.
205
+
206
+ ```python
207
+ #!/bin/bash
208
+ current_file="$0"
209
+ current_dir="$(dirname "$current_file")"
210
+ SERVER_IP=$1
211
+ SERVER_PORT=$2
212
+ PYTHONPATH=$current_dir:$PYTHONPATH python $current_dir/model_adapter.py \
213
+ --server_ip $SERVER_IP \
214
+ --server_port $SERVER_PORT \
215
+ "${@:3}"
216
+ ```
217
+
218
+ """
219
+
220
+ CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
221
+ CITATION_BUTTON_TEXT = r"""
222
+ """
src/display/__pycache__/formatting.cpython-313.pyc ADDED
Binary file (1.76 kB). View file
 
src/display/css_html_js.py ADDED
@@ -0,0 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ custom_css = """
2
+
3
+ .markdown-text {
4
+ font-size: 16px !important;
5
+ }
6
+
7
+ #models-to-add-text {
8
+ font-size: 18px !important;
9
+ }
10
+
11
+ #citation-button span {
12
+ font-size: 16px !important;
13
+ }
14
+
15
+ #citation-button textarea {
16
+ font-size: 16px !important;
17
+ }
18
+
19
+ #citation-button > label > button {
20
+ margin: 6px;
21
+ transform: scale(1.3);
22
+ }
23
+
24
+ #leaderboard-table {
25
+ margin-top: 15px
26
+ }
27
+
28
+ #leaderboard-table-lite {
29
+ margin-top: 15px
30
+ }
31
+
32
+ #search-bar-table-box > div:first-child {
33
+ background: none;
34
+ border: none;
35
+ }
36
+
37
+ #search-bar {
38
+ padding: 0px;
39
+ }
40
+
41
+ /* Limit the width of the first AutoEvalColumn so that names don't expand too much */
42
+ #leaderboard-table td:nth-child(2),
43
+ #leaderboard-table th:nth-child(2) {
44
+ max-width: 400px;
45
+ overflow: auto;
46
+ white-space: nowrap;
47
+ }
48
+
49
+ .tab-buttons button {
50
+ font-size: 20px;
51
+ }
52
+
53
+ #scale-logo {
54
+ border-style: none !important;
55
+ box-shadow: none;
56
+ display: block;
57
+ margin-left: auto;
58
+ margin-right: auto;
59
+ max-width: 600px;
60
+ }
61
+
62
+ #scale-logo .download {
63
+ display: none;
64
+ }
65
+ #filter_type{
66
+ border: 0;
67
+ padding-left: 0;
68
+ padding-top: 0;
69
+ }
70
+ #filter_type label {
71
+ display: flex;
72
+ }
73
+ #filter_type label > span{
74
+ margin-top: var(--spacing-lg);
75
+ margin-right: 0.5em;
76
+ }
77
+ #filter_type label > .wrap{
78
+ width: 103px;
79
+ }
80
+ #filter_type label > .wrap .wrap-inner{
81
+ padding: 2px;
82
+ }
83
+ #filter_type label > .wrap .wrap-inner input{
84
+ width: 1px
85
+ }
86
+ #filter-columns-type{
87
+ border:0;
88
+ padding:0.5;
89
+ }
90
+ #filter-columns-size{
91
+ border:0;
92
+ padding:0.5;
93
+ }
94
+ #box-filter > .form{
95
+ border: 0
96
+ }
97
+ """
98
+
99
+ get_window_url_params = """
100
+ function(url_params) {
101
+ const params = new URLSearchParams(window.location.search);
102
+ url_params = Object.fromEntries(params);
103
+ return url_params;
104
+ }
105
+ """
src/display/formatting.py ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ def model_hyperlink(link, model_name):
2
+ return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
3
+
4
+
5
+ def make_clickable_model(model_name):
6
+ link = f"https://huggingface.co/{model_name}"
7
+ return model_hyperlink(link, model_name)
8
+
9
+
10
+ def styled_error(error):
11
+ return f"<p style='color: red; font-size: 20px; text-align: center;'>{error}</p>"
12
+
13
+
14
+ def styled_warning(warn):
15
+ return f"<p style='color: orange; font-size: 20px; text-align: center;'>{warn}</p>"
16
+
17
+
18
+ def styled_message(message):
19
+ return f"<p style='color: green; font-size: 20px; text-align: center;'>{message}</p>"
20
+
21
+
22
+ def has_no_nan_values(df, columns):
23
+ return df[columns].notna().all(axis=1)
24
+
25
+
26
+ def has_nan_values(df, columns):
27
+ return df[columns].isna().any(axis=1)
src/display/utils.py ADDED
@@ -0,0 +1,186 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from dataclasses import dataclass, make_dataclass
2
+ from enum import Enum
3
+
4
+ import pandas as pd
5
+
6
+ from src.about import Tasks
7
+
8
+ def fields(raw_class):
9
+ return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
10
+
11
+
12
+ # These classes are for user facing column names,
13
+ # to avoid having to change them all around the code
14
+ # when a modif is needed
15
+ @dataclass
16
+ class ColumnContent:
17
+ name: str
18
+ type: str
19
+ displayed_by_default: bool
20
+ hidden: bool = False
21
+ never_hidden: bool = False
22
+ dummy: bool = False
23
+
24
+ ## Leaderboard columns
25
+ auto_eval_column_dict = []
26
+ # Init
27
+ auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
28
+ auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
29
+ #Scores
30
+ auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)])
31
+ for task in Tasks:
32
+ auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
33
+ # Model information
34
+ auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
35
+ #auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
36
+ auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
37
+ auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
38
+ #auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
39
+ auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
40
+ #auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False)])
41
+ #auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
42
+ auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
43
+ #auto_eval_column_dict.append(["merged", ColumnContent, ColumnContent("Merged", "bool", False)])
44
+ auto_eval_column_dict.append(["flagged", ColumnContent, ColumnContent("Flagged", "bool", False, hidden=True)])
45
+ auto_eval_column_dict.append(["moe", ColumnContent, ColumnContent("MoE", "bool", False, hidden=True)])
46
+ # Dummy column for the search bar (hidden by the custom CSS)
47
+ auto_eval_column_dict.append(["dummy", ColumnContent, ColumnContent("model_name_for_query", "str", False, dummy=True)])
48
+
49
+ # We use make dataclass to dynamically fill the scores from Tasks
50
+ AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
51
+
52
+ ## For the queue columns in the submission tab
53
+ @dataclass(frozen=True)
54
+ class EvalQueueColumn: # Queue column
55
+ model = ColumnContent("model", "markdown", True)
56
+ revision = ColumnContent("revision", "str", True)
57
+ private = ColumnContent("private", "bool", True)
58
+ precision = ColumnContent("precision", "str", True)
59
+ weight_type = ColumnContent("weight_type", "str", "Original")
60
+ status = ColumnContent("status", "str", True)
61
+
62
+ ## All the model information that we might need
63
+
64
+
65
+ @dataclass
66
+ class ModelDetails:
67
+ name: str
68
+ display_name: str = ""
69
+ symbol: str = "" # emoji
70
+
71
+
72
+ class ModelType(Enum):
73
+ PT = ModelDetails(name="pretrained", symbol="🟢")
74
+ FT = ModelDetails(name="fine-tuned on domain-specific datasets", symbol="🔶")
75
+ chat = ModelDetails(name="chat models (RLHF, DPO, IFT, ...)", symbol="💬")
76
+ merges = ModelDetails(name="base merges and moerges", symbol="🤝")
77
+ Unknown = ModelDetails(name="", symbol="?")
78
+
79
+ def to_str(self, separator=" "):
80
+ return f"{self.value.symbol}{separator}{self.value.name}"
81
+
82
+ @staticmethod
83
+ def from_str(type):
84
+ if "fine-tuned" in type or "🔶" in type:
85
+ return ModelType.FT
86
+ if "pretrained" in type or "🟢" in type:
87
+ return ModelType.PT
88
+ if any([k in type for k in ["instruction-tuned", "RL-tuned", "chat", "🟦", "⭕", "💬"]]):
89
+ return ModelType.chat
90
+ if "merge" in type or "🤝" in type:
91
+ return ModelType.merges
92
+ return ModelType.Unknown
93
+
94
+ class WeightType(Enum):
95
+ Adapter = ModelDetails("Adapter")
96
+ Original = ModelDetails("Original")
97
+ Delta = ModelDetails("Delta")
98
+
99
+ class Precision(Enum):
100
+ float16 = ModelDetails("float16")
101
+ bfloat16 = ModelDetails("bfloat16")
102
+ qt_8bit = ModelDetails("8bit")
103
+ qt_4bit = ModelDetails("4bit")
104
+ qt_GPTQ = ModelDetails("GPTQ")
105
+ Unknown = ModelDetails("?")
106
+
107
+ def from_str(precision):
108
+ if precision in ["torch.float16", "float16"]:
109
+ return Precision.float16
110
+ if precision in ["torch.bfloat16", "bfloat16"]:
111
+ return Precision.bfloat16
112
+ if precision in ["8bit"]:
113
+ return Precision.qt_8bit
114
+ if precision in ["4bit"]:
115
+ return Precision.qt_4bit
116
+ if precision in ["GPTQ", "None"]:
117
+ return Precision.qt_GPTQ
118
+ return Precision.Unknown
119
+
120
+ # Column selection
121
+ COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
122
+ TYPES = [c.type for c in fields(AutoEvalColumn) if not c.hidden]
123
+
124
+ EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
125
+ EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
126
+
127
+ BENCHMARK_COLS = [t.value.col_name for t in Tasks]
128
+
129
+ NUMERIC_INTERVALS = {
130
+ "?": pd.Interval(-1, 0, closed="right"),
131
+ "~1.5": pd.Interval(0, 2, closed="right"),
132
+ "~3": pd.Interval(2, 4, closed="right"),
133
+ "~7": pd.Interval(4, 9, closed="right"),
134
+ "~13": pd.Interval(9, 20, closed="right"),
135
+ "~35": pd.Interval(20, 45, closed="right"),
136
+ "~60": pd.Interval(45, 70, closed="right"),
137
+ "70+": pd.Interval(70, 10000, closed="right"),
138
+ }
139
+
140
+ # Define the baselines
141
+ baseline_row = {
142
+ AutoEvalColumn.model.name: "<p>Baseline</p>",
143
+ AutoEvalColumn.revision.name: "N/A",
144
+ AutoEvalColumn.precision.name: None,
145
+ AutoEvalColumn.average.name: 92.75,
146
+ #AutoEvalColumn.merged.name: False,
147
+ AutoEvalColumn.CMMMU.name: 100,
148
+ AutoEvalColumn.MMMU.name: 100,
149
+ AutoEvalColumn.MMMU_Pro_standard.name: 100,
150
+ AutoEvalColumn.MMMU_Pro_vision.name: 100,
151
+ AutoEvalColumn.MathVision.name: 100,
152
+ AutoEvalColumn.CII_Bench.name: 100,
153
+ AutoEvalColumn.Blink.name: 100,
154
+ AutoEvalColumn.CharXiv.name: 100,
155
+ AutoEvalColumn.MathVerse.name: 100,
156
+ AutoEvalColumn.MmvetV2.name: 100,
157
+ AutoEvalColumn.Ocrlite.name: 100,
158
+ AutoEvalColumn.OcrliteZh.name: 100,
159
+ AutoEvalColumn.dummy.name: "baseline",
160
+ AutoEvalColumn.model_type.name: "",
161
+ AutoEvalColumn.flagged.name: False,
162
+ }
163
+
164
+ # Define the human baselines
165
+ human_baseline_row = {
166
+ AutoEvalColumn.model.name: "<p>Human performance</p>",
167
+ AutoEvalColumn.revision.name: "N/A",
168
+ AutoEvalColumn.precision.name: None,
169
+ AutoEvalColumn.average.name: 92.75,
170
+ #AutoEvalColumn.merged.name: False,
171
+ AutoEvalColumn.CMMMU.name: 100,
172
+ AutoEvalColumn.MMMU.name: 100,
173
+ AutoEvalColumn.MMMU_Pro_standard.name: 100,
174
+ AutoEvalColumn.MMMU_Pro_vision.name: 100,
175
+ AutoEvalColumn.MathVision.name: 100,
176
+ AutoEvalColumn.CII_Bench.name: 100,
177
+ AutoEvalColumn.Blink.name: 100,
178
+ AutoEvalColumn.CharXiv.name: 100,
179
+ AutoEvalColumn.MathVerse.name: 100,
180
+ AutoEvalColumn.MmvetV2.name: 100,
181
+ AutoEvalColumn.Ocrlite.name: 100,
182
+ AutoEvalColumn.OcrliteZh.name: 100,
183
+ AutoEvalColumn.dummy.name: "human_baseline",
184
+ AutoEvalColumn.model_type.name: "",
185
+ AutoEvalColumn.flagged.name: False,
186
+ }
src/envs.py ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+ from huggingface_hub import HfApi
4
+
5
+ # Info to change for your repository
6
+ # ----------------------------------
7
+ TOKEN = os.environ.get("HF_TOKEN") # A read/write token for your org
8
+
9
+
10
+ #OWNER = "demo-leaderboard-backend" # Change to your org - don't forget to create a results and request dataset, with the correct format!
11
+ #REPO_ID = f"{OWNER}/leaderboard"
12
+ #QUEUE_REPO = f"{OWNER}/requests"
13
+ #RESULTS_REPO = f"{OWNER}/results"
14
+ #DYNAMIC_INFO_REPO = f"{OWNER}/dynamic_model_information"
15
+
16
+ REPO_ID = "BAAI/EmbodiedVerse"
17
+ QUEUE_REPO = "open-cn-llm-leaderboard/EmbodiedVerse_requests"
18
+ DYNAMIC_INFO_REPO = "open-cn-llm-leaderboard/EmbodiedVerse_dynamic_model_information"
19
+ RESULTS_REPO = "open-cn-llm-leaderboard/EmbodiedVerse_results"
20
+
21
+ IS_PUBLIC = bool(os.environ.get("IS_PUBLIC", True))
22
+ # If you setup a cache later, just change HF_HOME
23
+ CACHE_PATH=os.getenv("HF_HOME", ".")
24
+
25
+ # Local caches
26
+ EVAL_REQUESTS_PATH = os.path.join(CACHE_PATH, "eval-queue")
27
+ EVAL_RESULTS_PATH = os.path.join(CACHE_PATH, "eval-results")
28
+ EVAL_REQUESTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-queue-bk")
29
+ EVAL_RESULTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-results-bk")
30
+ DYNAMIC_INFO_PATH = os.path.join(CACHE_PATH, "dynamic-info")
31
+ DYNAMIC_INFO_FILE_PATH = os.path.join(DYNAMIC_INFO_PATH, "model_infos.json")
32
+
33
+ PATH_TO_COLLECTION = "open-cn-llm-leaderboard/flageval-vlm-leaderboard-best-models-677e51cdc44f8123e02cbda1"
34
+
35
+ # Rate limit variables
36
+ RATE_LIMIT_PERIOD = 7
37
+ RATE_LIMIT_QUOTA = 5
38
+ HAS_HIGHER_RATE_LIMIT = ["TheBloke"]
39
+
40
+ API = HfApi(token=TOKEN)
src/leaderboard/filter_models.py ADDED
@@ -0,0 +1,138 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from src.display.formatting import model_hyperlink
2
+ from src.display.utils import AutoEvalColumn
3
+
4
+ # Models which have been flagged by users as being problematic for a reason or another
5
+ # (Model name to forum discussion link)
6
+ FLAGGED_MODELS = {
7
+ "merged": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
8
+ "Voicelab/trurl-2-13b": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/202",
9
+ "deepnight-research/llama-2-70B-inst": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/207",
10
+ "Aspik101/trurl-2-13b-pl-instruct_unload": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/213",
11
+ "Fredithefish/ReasonixPajama-3B-HF": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/236",
12
+ "TigerResearch/tigerbot-7b-sft-v1": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/237",
13
+ "gaodrew/gaodrew-gorgonzola-13b": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/215",
14
+ "AIDC-ai-business/Marcoroni-70B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/287",
15
+ "AIDC-ai-business/Marcoroni-13B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/287",
16
+ "AIDC-ai-business/Marcoroni-7B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/287",
17
+ "fblgit/una-xaberius-34b-v1beta": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/444",
18
+ "jan-hq/trinity-v1": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
19
+ "rwitz2/go-bruins-v2.1.1": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
20
+ "rwitz2/go-bruins-v2.1": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
21
+ "GreenNode/GreenNodeLM-v3olet-7B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
22
+ "GreenNode/GreenNodeLM-7B-v4leo": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
23
+ "GreenNode/LeoScorpius-GreenNode-7B-v1": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
24
+ "viethq188/LeoScorpius-7B-Chat-DPO": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
25
+ "GreenNode/GreenNodeLM-7B-v2leo": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
26
+ "janai-hq/trinity-v1": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
27
+ "ignos/LeoScorpius-GreenNode-Alpaca-7B-v1": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
28
+ "fblgit/una-cybertron-7b-v3-OMA": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
29
+ "mncai/mistral-7b-dpo-merge-v1.1": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
30
+ "mncai/mistral-7b-dpo-v6": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
31
+ "Toten5/LeoScorpius-GreenNode-7B-v1": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
32
+ "GreenNode/GreenNodeLM-7B-v1olet": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
33
+ "quantumaikr/quantum-dpo-v0.1": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
34
+ "quantumaikr/quantum-v0.01": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
35
+ "quantumaikr/quantum-trinity-v0.1": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
36
+ "mncai/mistral-7b-dpo-v5": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
37
+ "cookinai/BruinHermes": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
38
+ "jan-ai/Pandora-10.7B-v1": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
39
+ "v1olet/v1olet_marcoroni-go-bruins-merge-7B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
40
+ "v1olet/v1olet_merged_dpo_7B_v3": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
41
+ "rwitz2/pee": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
42
+ "zyh3826 / GML-Mistral-merged-v1": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/503",
43
+ "dillfrescott/trinity-medium": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
44
+ "udkai/Garrulus": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/526",
45
+ "dfurman/GarrulusMarcoro-7B-v0.1": "https://huggingface.co/dfurman/GarrulusMarcoro-7B-v0.1/discussions/1",
46
+ "udkai/Turdus": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/548",
47
+ "eren23/slerp-test-turdus-beagle": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/548",
48
+ "abideen/NexoNimbus-7B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/548",
49
+ "alnrg2arg/test2_3": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/548",
50
+ "nfaheem/Marcoroni-7b-DPO-Merge": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/548",
51
+ "CultriX/MergeTrix-7B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/548",
52
+ "liminerity/Blur-7b-v1.21": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/548",
53
+ # Merges not indicated
54
+ "gagan3012/MetaModelv2": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
55
+ "gagan3012/MetaModelv3": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
56
+ "kyujinpy/Sakura-SOLRCA-Math-Instruct-DPO-v2": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
57
+ "kyujinpy/Sakura-SOLAR-Instruct-DPO-v2": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
58
+ "kyujinpy/Sakura-SOLRCA-Math-Instruct-DPO-v1": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
59
+ "kyujinpy/Sakura-SOLRCA-Instruct-DPO": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
60
+ "fblgit/LUNA-SOLARkrautLM-Instruct": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
61
+ "perlthoughts/Marcoroni-8x7B-v3-MoE": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
62
+ "rwitz/go-bruins-v2": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
63
+ "rwitz/go-bruins": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
64
+ "Walmart-the-bag/Solar-10.7B-Cato": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
65
+ "aqweteddy/mistral_tv-neural-marconroni": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
66
+ "NExtNewChattingAI/shark_tank_ai_7_b": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
67
+ "Q-bert/MetaMath-Cybertron": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
68
+ "OpenPipe/mistral-ft-optimized-1227": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
69
+ "perlthoughts/Falkor-7b": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
70
+ "v1olet/v1olet_merged_dpo_7B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
71
+ "Ba2han/BruinsV2-OpHermesNeu-11B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
72
+ "DopeorNope/You_can_cry_Snowman-13B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
73
+ "PistachioAlt/Synatra-MCS-7B-v0.3-RP-Slerp": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
74
+ "Weyaxi/MetaMath-una-cybertron-v2-bf16-Ties": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
75
+ "Weyaxi/OpenHermes-2.5-neural-chat-7b-v3-2-7B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
76
+ "perlthoughts/Falkor-8x7B-MoE": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
77
+ "elinas/chronos007-70b": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
78
+ "Weyaxi/MetaMath-NeuralHermes-2.5-Mistral-7B-Linear": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
79
+ "Weyaxi/MetaMath-neural-chat-7b-v3-2-Ties": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
80
+ "diffnamehard/Mistral-CatMacaroni-slerp-uncensored-7B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
81
+ "Weyaxi/neural-chat-7b-v3-1-OpenHermes-2.5-7B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
82
+ "Weyaxi/MetaMath-NeuralHermes-2.5-Mistral-7B-Ties": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
83
+ "Walmart-the-bag/Misted-7B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
84
+ "garage-bAInd/Camel-Platypus2-70B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
85
+ "Weyaxi/OpenOrca-Zephyr-7B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
86
+ "uukuguy/speechless-mistral-7b-dare-0.85": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
87
+ "DopeorNope/SOLARC-M-10.7B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/511",
88
+ "cloudyu/Mixtral_11Bx2_MoE_19B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/511",
89
+ "DopeorNope/SOLARC-MOE-10.7Bx6 ": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/511",
90
+ "DopeorNope/SOLARC-MOE-10.7Bx4": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/511",
91
+ "gagan3012/MetaModelv2 ": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/511",
92
+ }
93
+
94
+ # Models which have been requested by orgs to not be submitted on the leaderboard
95
+ DO_NOT_SUBMIT_MODELS = [
96
+ "Voicelab/trurl-2-13b", # trained on MMLU
97
+ "TigerResearch/tigerbot-70b-chat", # per authors request
98
+ "TigerResearch/tigerbot-70b-chat-v2", # per authors request
99
+ "TigerResearch/tigerbot-70b-chat-v4-4k", # per authors request
100
+ ]
101
+
102
+
103
+ def flag_models(leaderboard_data: list[dict]):
104
+ for model_data in leaderboard_data:
105
+ # Merges and moes are flagged automatically
106
+ if model_data[AutoEvalColumn.flagged.name] == True:
107
+ flag_key = "merged"
108
+ else:
109
+ flag_key = model_data["model_name_for_query"]
110
+
111
+ if flag_key in FLAGGED_MODELS:
112
+ issue_num = FLAGGED_MODELS[flag_key].split("/")[-1]
113
+ issue_link = model_hyperlink(
114
+ FLAGGED_MODELS[flag_key],
115
+ f"See discussion #{issue_num}",
116
+ )
117
+ model_data[
118
+ AutoEvalColumn.model.name
119
+ ] = f"{model_data[AutoEvalColumn.model.name]} has been flagged! {issue_link}"
120
+ model_data[AutoEvalColumn.flagged.name] = True
121
+ else:
122
+ model_data[AutoEvalColumn.flagged.name] = False
123
+
124
+
125
+ def remove_forbidden_models(leaderboard_data: list[dict]):
126
+ indices_to_remove = []
127
+ for ix, model in enumerate(leaderboard_data):
128
+ if model["model_name_for_query"] in DO_NOT_SUBMIT_MODELS:
129
+ indices_to_remove.append(ix)
130
+
131
+ for ix in reversed(indices_to_remove):
132
+ leaderboard_data.pop(ix)
133
+ return leaderboard_data
134
+
135
+
136
+ def filter_models_flags(leaderboard_data: list[dict]):
137
+ leaderboard_data = remove_forbidden_models(leaderboard_data)
138
+ flag_models(leaderboard_data)
src/leaderboard/read_evals.py ADDED
@@ -0,0 +1,237 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import glob
2
+ import json
3
+ import math
4
+ import os
5
+ from dataclasses import dataclass
6
+
7
+ import dateutil
8
+ import numpy as np
9
+
10
+ from src.display.formatting import make_clickable_model
11
+ from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision, WeightType
12
+ from src.submission.check_validity import is_model_on_hub
13
+
14
+
15
+ @dataclass
16
+ class EvalResult:
17
+ """Represents one full evaluation. Built from a combination of the result and request file for a given run.
18
+ """
19
+ eval_name: str # org_model_precision (uid)
20
+ full_model: str # org/model (path on hub)
21
+ org: str
22
+ model: str
23
+ revision: str # commit hash, "" if main
24
+ results: dict
25
+ precision: Precision = Precision.Unknown
26
+ model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
27
+ weight_type: WeightType = WeightType.Original # Original or Adapter
28
+ architecture: str = "Unknown"
29
+ license: str = "?"
30
+ likes: int = 0
31
+ num_params: int = 0
32
+ date: str = "" # submission date of request file
33
+ still_on_hub: bool = False
34
+ is_merge: bool = False
35
+ flagged: bool = False
36
+ status: str = "FINISHED"
37
+ tags: list = None
38
+
39
+ @classmethod
40
+ def init_from_json_file(self, json_filepath):
41
+ """Inits the result from the specific model result file"""
42
+ with open(json_filepath) as fp:
43
+ data = json.load(fp)
44
+
45
+ config = data.get("config_general")
46
+
47
+ # Precision
48
+ precision = Precision.from_str(config.get("model_dtype"))
49
+
50
+ # Get model and org
51
+ org_and_model = config.get("model_name")#, config.get("model_args", None))
52
+ org_and_model = org_and_model.split("/", 1)
53
+
54
+ if len(org_and_model) == 1:
55
+ org = None
56
+ model = org_and_model[0]
57
+ result_key = f"{model}_{precision.value.name}"
58
+ else:
59
+ org = org_and_model[0]
60
+ model = org_and_model[1]
61
+ result_key = f"{org}_{model}_{precision.value.name}"
62
+ full_model = "/".join(org_and_model)
63
+
64
+ still_on_hub, _, model_config = is_model_on_hub(
65
+ full_model, config.get("model_sha", "main"), trust_remote_code=True, test_tokenizer=False
66
+ )
67
+ architecture = "?"
68
+ if model_config is not None:
69
+ architectures = getattr(model_config, "architectures", None)
70
+ if architectures:
71
+ architecture = ";".join(architectures)
72
+
73
+ # Extract results available in this file (some results are split in several files)
74
+ results = {}
75
+ for task in Tasks:
76
+ task = task.value
77
+
78
+ # We average all scores of a given metric (not all metrics are present in all files)
79
+ accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if task.benchmark == k])
80
+ if accs.size == 0 or any([acc is None for acc in accs]):
81
+ continue
82
+
83
+ mean_acc = np.mean(accs) if len(accs) > 0 else 0
84
+ results[task.benchmark] = mean_acc
85
+
86
+ return self(
87
+ eval_name=result_key,
88
+ full_model=full_model,
89
+ org=org,
90
+ model=model,
91
+ results=results,
92
+ precision=precision,
93
+ revision= config.get("model_sha", ""),
94
+ still_on_hub=still_on_hub,
95
+ architecture=architecture
96
+ )
97
+
98
+ def update_with_request_file(self, requests_path):
99
+ """Finds the relevant request file for the current model and updates info with it"""
100
+ request_file = get_request_file_for_model(requests_path, self.full_model, self.precision.value.name)
101
+
102
+ try:
103
+ with open(request_file, "r") as f:
104
+ request = json.load(f)
105
+ self.model_type = ModelType.from_str(request.get("model_type", ""))
106
+ self.weight_type = WeightType[request.get("weight_type", "Original")]
107
+ self.license = request.get("license", "?")
108
+ self.likes = request.get("likes", 0)
109
+ self.num_params = request.get("params", 0)
110
+ self.date = request.get("submitted_time", "")
111
+ self.architecture = request.get("architectures", "Unknown")
112
+ self.status = request.get("status", "FAILED")
113
+ except Exception:
114
+ self.status = "FAILED"
115
+ print(f"Could not find request file for {self.org}/{self.model} with precision {self.precision.value.name}")
116
+
117
+ def update_with_dynamic_file_dict(self, file_dict):
118
+ self.license = file_dict.get("license", "?")
119
+ self.likes = file_dict.get("likes", 0)
120
+ self.still_on_hub = file_dict["still_on_hub"]
121
+ self.flagged = any("flagged" in tag for tag in file_dict["tags"])
122
+ self.tags = file_dict["tags"]
123
+
124
+ def to_dict(self):
125
+ """Converts the Eval Result to a dict compatible with our dataframe display"""
126
+ average = 0
127
+ nums = 0
128
+ for v in self.results.values():
129
+ if v is not None and v != 0:
130
+ average += v
131
+ nums += 1
132
+ if nums ==0:
133
+ average = 0
134
+ else:
135
+ average = average/nums
136
+
137
+ data_dict = {
138
+ "eval_name": self.eval_name, # not a column, just a save name,
139
+ AutoEvalColumn.precision.name: self.precision.value.name,
140
+ AutoEvalColumn.model_type.name: self.model_type.value.name,
141
+ AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
142
+ AutoEvalColumn.weight_type.name: self.weight_type.value.name,
143
+ #AutoEvalColumn.architecture.name: self.architecture,
144
+ AutoEvalColumn.model.name: make_clickable_model(self.full_model),
145
+ AutoEvalColumn.dummy.name: self.full_model,
146
+ AutoEvalColumn.revision.name: self.revision,
147
+ AutoEvalColumn.average.name: average,
148
+
149
+ #AutoEvalColumn.license.name: self.license,
150
+ #AutoEvalColumn.likes.name: self.likes,
151
+ AutoEvalColumn.params.name: self.num_params,
152
+ #AutoEvalColumn.still_on_hub.name: self.still_on_hub,
153
+ #AutoEvalColumn.merged.name: "merge" in self.tags if self.tags else False,
154
+ AutoEvalColumn.moe.name: ("moe" in self.tags if self.tags else False) or "moe" in self.full_model.lower(),
155
+ AutoEvalColumn.flagged.name: self.flagged
156
+ }
157
+
158
+ for task in Tasks:
159
+ #data_dict[task.value.col_name] = self.results.get(task.value.benchmark, 0)
160
+ if task.value.col_name != "CLCC-H":
161
+ data_dict[task.value.col_name] = self.results.get(task.value.benchmark, 0)
162
+ else:
163
+ if self.results.get(task.value.benchmark, 0) == 0:
164
+ data_dict[task.value.col_name] = "-"
165
+ else:
166
+ data_dict[task.value.col_name] = "%.2f" % self.results.get(task.value.benchmark, 0)
167
+
168
+ return data_dict
169
+
170
+ def get_request_file_for_model(requests_path, model_name, precision):
171
+ """Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
172
+ request_files = os.path.join(
173
+ requests_path,
174
+ f"{model_name}_eval_request_*.json",
175
+ )
176
+ request_files = glob.glob(request_files)
177
+
178
+ # Select correct request file (precision)
179
+ request_file = ""
180
+ request_files = sorted(request_files, reverse=True)
181
+ for tmp_request_file in request_files:
182
+ with open(tmp_request_file, "r") as f:
183
+ req_content = json.load(f)
184
+ if (
185
+ req_content["status"] in ["FINISHED"]
186
+ and req_content["precision"] == precision.split(".")[-1]
187
+ ):
188
+ request_file = tmp_request_file
189
+ return request_file
190
+
191
+
192
+ def get_raw_eval_results(results_path: str, requests_path: str, dynamic_path: str) -> list[EvalResult]:
193
+ """From the path of the results folder root, extract all needed info for results"""
194
+ model_result_filepaths = []
195
+
196
+ for root, _, files in os.walk(results_path):
197
+ # We should only have json files in model results
198
+ if len(files) == 0 or any([not f.endswith(".json") for f in files]):
199
+ continue
200
+
201
+ # Sort the files by date
202
+ try:
203
+ files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7])
204
+ except dateutil.parser._parser.ParserError:
205
+ files = [files[-1]]
206
+
207
+ for file in files:
208
+ model_result_filepaths.append(os.path.join(root, file))
209
+ try:
210
+ with open(dynamic_path) as f:
211
+ dynamic_data = json.load(f)
212
+ except:
213
+ dynamic_data ={}
214
+ eval_results = {}
215
+ for model_result_filepath in model_result_filepaths:
216
+ # Creation of result
217
+ eval_result = EvalResult.init_from_json_file(model_result_filepath)
218
+ eval_result.update_with_request_file(requests_path)
219
+ if eval_result.full_model in dynamic_data:
220
+ eval_result.update_with_dynamic_file_dict(dynamic_data[eval_result.full_model])
221
+
222
+ # Store results of same eval together
223
+ eval_name = eval_result.eval_name
224
+ if eval_name in eval_results.keys():
225
+ eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
226
+ else:
227
+ eval_results[eval_name] = eval_result
228
+
229
+ results = []
230
+ for v in eval_results.values():
231
+ try:
232
+ v.to_dict() # we test if the dict version is complete
233
+ results.append(v)
234
+ except KeyError: # not all eval values present
235
+ continue
236
+
237
+ return results
src/populate.py ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import os
3
+
4
+ import pandas as pd
5
+
6
+ from src.display.formatting import has_no_nan_values, make_clickable_model
7
+ from src.display.utils import AutoEvalColumn, EvalQueueColumn, baseline_row
8
+ from src.leaderboard.read_evals import get_raw_eval_results
9
+ from src.leaderboard.filter_models import filter_models_flags
10
+
11
+
12
+ def get_leaderboard_df(results_path: str, requests_path: str, dynamic_path: str,cols: list, benchmark_cols: list) -> pd.DataFrame:
13
+ """Creates a dataframe from all the individual experiment results"""
14
+ raw_data = get_raw_eval_results(results_path, requests_path, dynamic_path)
15
+ all_data_json = [v.to_dict() for v in raw_data]
16
+ all_data_json.append(baseline_row)
17
+ filter_models_flags(all_data_json)
18
+
19
+ df = pd.DataFrame.from_records(all_data_json)
20
+ df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
21
+ df = df[cols].round(decimals=2)
22
+
23
+ # filter out if any of the benchmarks have not been produced
24
+ df = df[has_no_nan_values(df, benchmark_cols)]
25
+ return raw_data, df
26
+
27
+
28
+ def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
29
+ """Creates the different dataframes for the evaluation queues requestes"""
30
+ entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")]
31
+ all_evals = []
32
+ for entry in entries:
33
+ if ".json" in entry:
34
+ file_path = os.path.join(save_path, entry)
35
+ with open(file_path) as fp:
36
+ data = json.load(fp)
37
+ data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
38
+ data[EvalQueueColumn.revision.name] = data.get("revision", "main")
39
+
40
+ all_evals.append(data)
41
+ elif ".md" not in entry:
42
+ # this is a folder
43
+ sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if not e.startswith(".")]
44
+ for sub_entry in sub_entries:
45
+ file_path = os.path.join(save_path, entry, sub_entry)
46
+ with open(file_path) as fp:
47
+ data = json.load(fp)
48
+
49
+ data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
50
+ data[EvalQueueColumn.revision.name] = data.get("revision", "main")
51
+ all_evals.append(data)
52
+ pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]]
53
+ running_list = [e for e in all_evals if e["status"] == "RUNNING"]
54
+ finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"]
55
+ df_pending = pd.DataFrame.from_records(pending_list, columns=cols)
56
+ df_running = pd.DataFrame.from_records(running_list, columns=cols)
57
+ df_finished = pd.DataFrame.from_records(finished_list, columns=cols)
58
+ return df_finished[cols], df_running[cols], df_pending[cols]
src/scripts/check_request.py ADDED
@@ -0,0 +1,404 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import os
3
+ import io
4
+ from datetime import datetime, timezone
5
+ import hmac
6
+ import hashlib
7
+ import time
8
+ import requests
9
+ import pandas as pd
10
+
11
+ from colorama import Fore
12
+ from huggingface_hub import HfApi, snapshot_download
13
+ import os
14
+ import sys
15
+
16
+
17
+ current_script_path = os.path.abspath(__file__)
18
+ src_directory = os.path.join(os.path.dirname(current_script_path), '..', '..')
19
+ sys.path.append(src_directory)
20
+
21
+ # print(sys.path)
22
+ from src.display.utils import EVAL_COLS,BENCHMARK_COLS,COLS
23
+ from src.envs import API, EVAL_REQUESTS_PATH, DYNAMIC_INFO_REPO, DYNAMIC_INFO_FILE_PATH, DYNAMIC_INFO_PATH, EVAL_RESULTS_PATH, TOKEN, IS_PUBLIC, QUEUE_REPO, REPO_ID, RESULTS_REPO
24
+
25
+
26
+
27
+ status_mapping = {
28
+ 'P': 'PENDING',
29
+ 'R': 'RUNNING',
30
+ 'S': 'FINISHED',
31
+ 'F': 'FAILED',
32
+ 'C': 'CANCELLED'
33
+ }
34
+
35
+ dataset_metric_mapping = {
36
+ 'ChartQA': ('accuracy','acc'),
37
+ 'CMMMU': ('accuracy','acc'),
38
+ 'CMMU': ('accuracy','acc'),
39
+ 'MMMU': ('accuracy','acc'),
40
+ 'MMMU_Pro_standard': ('accuracy','acc'),
41
+ 'MMMU_Pro_vision': ('accuracy','acc'),
42
+ 'OCRBench': ('accuracy','acc'),
43
+ 'MathVision': ('accuracy','acc'),
44
+ 'CII-Bench': ('accuracy','acc'),
45
+ 'Blink': ('accuracy','acc'),
46
+ }
47
+
48
+
49
+ failed_mapping = {}
50
+ # Example usage
51
+ # 生产环境
52
+ #base_url = 'https://flageval.baai.ac.cn/api/hf'
53
+ #secret = b'M2L84t36MdzwS1Lb'
54
+ # 测试环境
55
+ base_url = 'http://120.92.17.239:8080/api/hf'
56
+ secret = b'Dn29TMCxzvKBGMS8'
57
+ # model_id = 'Qwen/Qwen1.5-0.5B'
58
+
59
+ MAX_GPU_USAGE = 20
60
+ LC_A800_QUEUE_ID = "877467e6-808b-487e-8a06-af8e96c83fa6"
61
+ A800_QUEUE_ID = "f016ff98-6ec8-4b1e-aed2-9a93753119b2"
62
+ A100_QUEUE_ID = "7f8cb309-295f-4f56-8159-f43f60f03f9c"
63
+ MAX_A800_UASGE = 1
64
+
65
+ def get_gpu_number(params=0):
66
+ # 参数量除以 30 再向上取整,就算 params为0,最小为1
67
+ # return -(-params // 35)
68
+ # return -(-params // 35)
69
+ # return -(-params // 35)
70
+ if params == 0:
71
+ return 0, A100_QUEUE_ID
72
+ if params < 9:
73
+ return 1, A100_QUEUE_ID
74
+ if params < 15:
75
+ return 2, A100_QUEUE_ID
76
+ elif params < 35:
77
+ return 4, A100_QUEUE_ID
78
+ elif params < 70:
79
+ return 3, LC_A800_QUEUE_ID
80
+ elif params < 100:
81
+ return 5, LC_A800_QUEUE_ID
82
+ elif params < 140:
83
+ return 6, LC_A800_QUEUE_ID
84
+ else:
85
+ return 8, LC_A800_QUEUE_ID
86
+
87
+ def generate_signature(secret, url, body):
88
+ timestamp = str(int(time.time()))
89
+ to_sign = f'{timestamp}{url}{body}'
90
+ h = hmac.new(secret, to_sign.encode('utf-8'), digestmod=hashlib.sha256)
91
+ sign = h.hexdigest()
92
+ return sign, timestamp
93
+
94
+ def submit_evaluation(base_url, secret, model_id, require_gpus=None, priority=None, gpus_queue_id=None, hf_user_id=None):
95
+ url = f'{base_url}/mm/batches'
96
+ data = {'modelId': model_id}
97
+ if require_gpus is not None:
98
+ data['requireGpus'] = require_gpus
99
+ if priority is not None:
100
+ data['priority'] = priority
101
+ if gpus_queue_id is not None:
102
+ data['gpus_queue_id'] = gpus_queue_id
103
+ if hf_user_id is not None:
104
+ data['hfUserId'] = hf_user_id
105
+
106
+ raw_body = json.dumps(data)
107
+ sign, timestamp = generate_signature(secret, url, raw_body)
108
+
109
+ headers = {
110
+ 'Content-Type': 'application/json',
111
+ 'X-Flageval-Sign': sign,
112
+ 'X-Flageval-Timestamp': timestamp,
113
+ }
114
+
115
+ response = requests.post(url, data=raw_body, headers=headers)
116
+ print("submit_evaluation response",response)
117
+ response_data = response.json()
118
+
119
+ evaluation_info = {
120
+ 'evaluationId': response_data.get('evaluationId'),
121
+ 'eval_id': response_data.get('id')
122
+ }
123
+ return evaluation_info
124
+
125
+ def poll_evaluation_progress(base_url, secret, batch_id):
126
+ url = f'{base_url}/mm/batches/{int(batch_id)}'
127
+ sign, timestamp = generate_signature(secret, url, '')
128
+
129
+ headers = {
130
+ 'X-Flageval-Sign': sign,
131
+ 'X-Flageval-Timestamp': timestamp,
132
+ }
133
+
134
+ try:
135
+ response = requests.get(url, headers=headers)
136
+ response.raise_for_status() # 如果响应状态不是200,将引发HTTPError异常
137
+
138
+ response_data = response.json()
139
+
140
+ evaluation_progress = {
141
+ 'evaluationId': response_data.get('evaluationId'),
142
+ 'eval_id': response_data.get('batchId'),
143
+ 'status': response_data.get('status'),
144
+ 'details': response_data.get('details', [])
145
+ }
146
+ return evaluation_progress
147
+
148
+ except requests.exceptions.RequestException as e:
149
+ print(f"请求错误: {e}")
150
+ except ValueError:
151
+ print(f"解析JSON时出错:{response}")
152
+ except Exception as e:
153
+ print(f"未知错误: {e}")
154
+
155
+ return {'status': '未执行成功'}
156
+
157
+ def update_gpu_usage(change):
158
+ global current_gpu_usage
159
+ current_gpu_usage += change
160
+
161
+ def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
162
+ all_evals = []
163
+
164
+ for root, dirs, files in os.walk(save_path):
165
+ for file in files:
166
+ if file.endswith(".json"):
167
+ file_path = os.path.join(root, file)
168
+ with open(file_path) as fp:
169
+ data = json.load(fp)
170
+ # 确保所有列都存在,不存在的列初始化为 None
171
+ for col in cols:
172
+ if col not in data:
173
+ if col == "failed_status":
174
+ data[col] = 0
175
+ else:
176
+ data[col] = None
177
+
178
+ all_evals.append(data)
179
+ # all_eval order by submited_time
180
+ all_evals = sorted(all_evals, key=lambda x: x['submitted_time'])
181
+
182
+ pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]]
183
+ pending_list = sorted(pending_list, key=lambda x: x['params'])
184
+ pending_list = sorted(pending_list, key=lambda x: x['failed_status'])
185
+ running_list = [e for e in all_evals if e["status"] == "RUNNING"]
186
+ finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"]
187
+
188
+ df_pending = pd.DataFrame(pending_list) if pending_list else pd.DataFrame(columns=cols)
189
+ df_running = pd.DataFrame(running_list) if running_list else pd.DataFrame(columns=cols)
190
+ df_finished = pd.DataFrame(finished_list) if finished_list else pd.DataFrame(columns=cols)
191
+
192
+ return df_finished[cols], df_running[cols], df_pending[cols]
193
+
194
+ def update_evaluation_queue(model_name, nstatus, eval_id=None, flageval_id=None):
195
+ print("update_evaluation_queue", model_name, nstatus, eval_id)
196
+ fail_status = -1
197
+ if len(nstatus.split("_")) == 2:
198
+ status, fail_status = nstatus.split("_")[0], int(nstatus.split("_")[1])
199
+ else:
200
+ status = nstatus
201
+ user_name, model_path = model_name.split("/") if "/" in model_name else ("", model_name)
202
+ out_dir = f"{EVAL_REQUESTS_PATH}/{user_name}"
203
+ json_files = [f for f in os.listdir(out_dir) if f.startswith(model_path + '_') and f.endswith(".json")]
204
+
205
+ if not json_files:
206
+ print(f"No JSON file found for model {model_name}")
207
+ return
208
+
209
+ for json_file in json_files:
210
+ json_path = os.path.join(out_dir, json_file)
211
+ with open(json_path, "r") as f:
212
+ eval_entry = json.load(f)
213
+
214
+ print("befor update_evaluation_queue", eval_entry['status'], eval_entry['failed_status'])
215
+ eval_entry['status'] = status
216
+ if fail_status >=0:
217
+ eval_entry['failed_status'] = fail_status
218
+ if eval_id is not None:
219
+ eval_entry['eval_id'] = eval_id
220
+ if flageval_id is not None:
221
+ eval_entry['flageval_id'] = flageval_id
222
+ print("after update_evaluation_queue status change", eval_entry['status'], eval_entry['failed_status'])
223
+ with open(json_path, "w") as f:
224
+ # f.write(json.dumps(eval_entry))
225
+ json.dump(eval_entry, f, indent=4)
226
+
227
+ api.upload_file(
228
+ path_or_fileobj=json_path,
229
+ path_in_repo=json_path.split(f"{EVAL_REQUESTS_PATH}/")[1],
230
+ repo_id=QUEUE_REPO,
231
+ repo_type="dataset",
232
+ commit_message=f"Update {model_name} status to {status}",
233
+ )
234
+
235
+ def save_and_upload_results(model_name, details):
236
+ converted_details = {
237
+ "config_general": {
238
+ "model_name": model_name,
239
+ "model_dtype": "float16",
240
+ "model_size": 0
241
+ },
242
+ "results": {},
243
+ "versions": {},
244
+ "config_tasks": {},
245
+ "summary_tasks": {},
246
+ "summary_general": {}
247
+ }
248
+ for detail in details:
249
+ dataset = detail['dataset']
250
+ status = detail['status']
251
+ # accuracy = detail['accuracy']
252
+ if status == 'S' and dataset in dataset_metric_mapping.keys():
253
+ # dataset_key = f"harness|{dataset}|5"
254
+ acc_key = dataset_metric_mapping[dataset][0]
255
+ acc = detail['accuracy'] if acc_key == 'accuracy' else detail['rawDetails'][acc_key]
256
+ converted_details['results'][dataset] = {
257
+ dataset_metric_mapping[dataset][1]: acc,
258
+ "acc_stderr": 0
259
+ }
260
+ # 添加详细信息
261
+ for metric, value in detail['rawDetails'].items():
262
+ converted_details['results'][dataset][metric] = value
263
+
264
+ out_dir = f"{EVAL_RESULTS_PATH}/{model_name}"
265
+ os.makedirs(out_dir, exist_ok=True)
266
+ result_path = os.path.join(out_dir, f"results_{datetime.now().strftime('%Y-%m-%dT%H-%M-%S.%f')}.json")
267
+
268
+ with open(result_path, "w") as f:
269
+ json.dump(converted_details, f, indent=4)
270
+
271
+ api.upload_file(
272
+ path_or_fileobj=result_path,
273
+ path_in_repo=result_path.split(f"{EVAL_RESULTS_PATH}/")[1],
274
+ repo_id=RESULTS_REPO,
275
+ repo_type="dataset",
276
+ commit_message=f"Add results for {model_name}",
277
+ )
278
+
279
+ from tqdm.auto import tqdm
280
+ import io
281
+
282
+ class SilentTqdm(tqdm):
283
+ def __init__(self, *args, **kwargs):
284
+ kwargs['bar_format'] = ''
285
+ kwargs['leave'] = False
286
+ super().__init__(*args, **kwargs, file=io.StringIO())
287
+
288
+ def update(self, n=1):
289
+ pass
290
+
291
+ def close(self):
292
+ pass
293
+
294
+
295
+ def snapshot_download_with_retry(max_retries, wait_time, *args, **kwargs):
296
+ for i in range(max_retries):
297
+ try:
298
+ return snapshot_download(*args, **kwargs)
299
+ except Exception as e:
300
+ if i < max_retries - 1: # i is zero indexed
301
+ print(f"Error occurred: {e}. Retrying in {wait_time} seconds...")
302
+ time.sleep(wait_time)
303
+ else:
304
+ print("Max retries reached. Raising exception.")
305
+ raise
306
+
307
+
308
+ api = HfApi()
309
+
310
+ print(EVAL_REQUESTS_PATH)
311
+ print(DYNAMIC_INFO_PATH)
312
+ print(EVAL_RESULTS_PATH)
313
+
314
+ prev_running_models = ''
315
+
316
+ while True:
317
+
318
+ snapshot_download_with_retry(5, 10, repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=SilentTqdm, etag_timeout=30)
319
+ snapshot_download_with_retry(5, 10, repo_id=DYNAMIC_INFO_REPO, local_dir=DYNAMIC_INFO_PATH, repo_type="dataset", tqdm_class=SilentTqdm, etag_timeout=30)
320
+ snapshot_download_with_retry(5, 10, repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=SilentTqdm, etag_timeout=30)
321
+
322
+ (
323
+ finished_eval_queue_df,
324
+ running_eval_queue_df,
325
+ pending_eval_queue_df,
326
+ ) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, ['model','status','params','eval_id', 'failed_status'])
327
+ ## pending list test
328
+ pending_list = [row for _,row in pending_eval_queue_df.iterrows()]
329
+
330
+ for pend in pending_list:
331
+ print("pending", pend)
332
+
333
+ # 根据正在运行的评测队列更新当前 GPU 使用情况
334
+ current_gpu_usage = 0
335
+ current_A800gpu_usage = 0
336
+ for _, row in running_eval_queue_df.iterrows():
337
+ print(get_gpu_number(row['params']), row['params'])
338
+ gpus_num, gpus_queue_id = get_gpu_number(row['params'])
339
+ current_gpu_usage += gpus_num
340
+ if gpus_queue_id == LC_A800_QUEUE_ID:
341
+ current_A800gpu_usage += 1
342
+ # print(f'Current GPU usage: {current_gpu_usage}/{MAX_GPU_USAGE}')
343
+ running_models = ", ".join([row["model"] for _, row in running_eval_queue_df.iterrows()])
344
+ if running_models != prev_running_models:
345
+ print(f'{datetime.now().strftime("%Y-%m-%d %H:%M:%S")} | GPU usage: {current_gpu_usage}/{MAX_GPU_USAGE} | Running models: {running_models}')
346
+ prev_running_models = running_models
347
+
348
+ print("current A800 GPU usage", current_A800gpu_usage)
349
+ # 只查询 pending_eval_queue_df 中的前5个待处理的评测
350
+ if not pending_eval_queue_df.empty:
351
+ for i,row in pending_eval_queue_df.iterrows():
352
+ #if i >= 3 : break
353
+ required_gpus, gpus_queue_id = get_gpu_number(row['params'])
354
+ if gpus_queue_id == LC_A800_QUEUE_ID:
355
+ if current_A800gpu_usage >= MAX_A800_UASGE:
356
+ print(current_A800gpu_usage >= MAX_A800_UASGE, row['model'])
357
+ continue
358
+ if "princeton-nlp/Llama-3-8B-ProLong-512k" in row['model']:
359
+ required_gpus += 1
360
+ if current_gpu_usage + required_gpus <= MAX_GPU_USAGE:
361
+ #确认是否有重复提交
362
+ if row['model'] in [row["model"] for _, row in running_eval_queue_df.iterrows()]:
363
+ priniit(f'{datetime.now().strftime("%Y-%m-%d %H:%M:%S")} | Evaluation {row["model"]} is already running')
364
+ update_evaluation_queue(row['model'], 'CANCELLED', evaluation_info['eval_id'], evaluation_info['evaluationId'])
365
+ continue
366
+ # 提交评测
367
+ try:
368
+ evaluation_info = submit_evaluation(base_url, secret, row['model'], require_gpus=required_gpus,priority='high',gpus_queue_id=gpus_queue_id)
369
+ update_evaluation_queue(row['model'], 'RUNNING', evaluation_info['eval_id'], evaluation_info['evaluationId'])
370
+ update_gpu_usage(required_gpus)
371
+ print(f'{datetime.now().strftime("%Y-%m-%d %H:%M:%S")} | Submitted evaluation {row["model"]} with {required_gpus} GPUs, submit info: {evaluation_info}')
372
+ except Exception as e:
373
+ print(e)
374
+ continue
375
+
376
+ # 查询正在运行的评测状态
377
+ for _, row in running_eval_queue_df.iterrows():
378
+ progress = poll_evaluation_progress(base_url, secret, row['eval_id'])
379
+ if progress['status'] in ['S', 'F', 'C'] or progress['status'] == 'DI':
380
+ new_status = status_mapping.get(progress['status'], 'FINISHED')
381
+ update_evaluation_queue(row['model'], new_status)
382
+ gpus_num, gpus_queue_id = get_gpu_number(row['params'])
383
+ update_gpu_usage(-gpus_num)
384
+ if gpus_queue_id == LC_A800_QUEUE_ID:
385
+ current_A800gpu_usage -= 1
386
+ print(f'{datetime.now().strftime("%Y-%m-%d %H:%M:%S")} | Evaluation {row["model"]} finished with status {progress["status"]}')
387
+ if new_status == 'FAILED':
388
+ print("failed_mapping0", failed_mapping)
389
+ if row['model'] in failed_mapping:
390
+ failed_mapping[row['model']] += 1
391
+ else:
392
+ failed_mapping[row['model']] = 1
393
+ print("failed_mapping add", failed_mapping, row['failed_status'])
394
+ if failed_mapping[row['model']] == 5:
395
+ del failed_mapping[row['model']]
396
+ update_evaluation_queue(row['model'], 'PENDING_'+str(int(row['failed_status']+1)))
397
+ else:
398
+ update_evaluation_queue(row['model'], 'PENDING')
399
+ print(f'{datetime.now().strftime("%Y-%m-%d %H:%M:%S")} |--------------- RePending {row["model"]} ------------ ')
400
+ elif new_status == 'FINISHED':
401
+ print(progress)
402
+ save_and_upload_results(row['model'], progress['details'])
403
+
404
+ time.sleep(300) # 调整队列检查间隔
src/scripts/create_request_file.py ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import os
3
+ import pprint
4
+ from datetime import datetime, timezone
5
+
6
+ import click
7
+ from colorama import Fore
8
+ from huggingface_hub import HfApi, snapshot_download
9
+
10
+ from src.submission.check_validity import get_model_size
11
+ from src.display.utils import ModelType, WeightType
12
+
13
+ EVAL_REQUESTS_PATH = "eval-queue"
14
+ QUEUE_REPO = "open-cn-llm-leaderboard/vlm_requests"
15
+
16
+ precisions = ("float16", "bfloat16", "8bit (LLM.int8)", "4bit (QLoRA / FP4)", "GPTQ")
17
+ model_types = [e.name for e in ModelType]
18
+ weight_types = [e.name for e in WeightType]
19
+
20
+
21
+ def main():
22
+ api = HfApi()
23
+ current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
24
+ snapshot_download(repo_id=QUEUE_REPO, revision="main", local_dir=EVAL_REQUESTS_PATH, repo_type="dataset")
25
+
26
+ model_name = click.prompt("Enter model name")
27
+ revision = click.prompt("Enter revision", default="main")
28
+ precision = click.prompt("Enter precision", default="float16", type=click.Choice(precisions))
29
+ model_type = click.prompt("Enter model type", type=click.Choice(model_types))
30
+ weight_type = click.prompt("Enter weight type", default="Original", type=click.Choice(weight_types))
31
+ base_model = click.prompt("Enter base model", default="")
32
+ status = click.prompt("Enter status", default="FINISHED")
33
+
34
+ try:
35
+ model_info = api.model_info(repo_id=model_name, revision=revision)
36
+ except Exception as e:
37
+ print(f"{Fore.RED}Could not find model info for {model_name} on the Hub\n{e}{Fore.RESET}")
38
+ return 1
39
+
40
+ model_size = get_model_size(model_info=model_info, precision=precision)
41
+
42
+ try:
43
+ license = model_info.cardData["license"]
44
+ except Exception:
45
+ license = "?"
46
+
47
+ eval_entry = {
48
+ "model": model_name,
49
+ "base_model": base_model,
50
+ "revision": revision,
51
+ "private": False,
52
+ "precision": precision,
53
+ "weight_type": weight_type,
54
+ "status": status,
55
+ "submitted_time": current_time,
56
+ "model_type": model_type,
57
+ "likes": model_info.likes,
58
+ "params": model_size,
59
+ "license": license,
60
+ }
61
+
62
+ user_name = ""
63
+ model_path = model_name
64
+ if "/" in model_name:
65
+ user_name = model_name.split("/")[0]
66
+ model_path = model_name.split("/")[1]
67
+
68
+ pprint.pprint(eval_entry)
69
+
70
+ if click.confirm("Do you want to continue? This request file will be pushed to the hub"):
71
+ click.echo("continuing...")
72
+
73
+ out_dir = f"{EVAL_REQUESTS_PATH}/{user_name}"
74
+ os.makedirs(out_dir, exist_ok=True)
75
+ out_path = f"{out_dir}/{model_path}_eval_request_{False}_{precision}_{weight_type}.json"
76
+
77
+ with open(out_path, "w") as f:
78
+ # f.write(json.dumps(eval_entry))
79
+ json.dump(eval_entry, f, indent=4)
80
+
81
+ api.upload_file(
82
+ path_or_fileobj=out_path,
83
+ path_in_repo=out_path.split(f"{EVAL_REQUESTS_PATH}/")[1],
84
+ repo_id=QUEUE_REPO,
85
+ repo_type="dataset",
86
+ commit_message=f"Add {model_name} to eval queue",
87
+ )
88
+ else:
89
+ click.echo("aborting...")
90
+
91
+
92
+ if __name__ == "__main__":
93
+ main()
src/scripts/update_all_request_files.py ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #from huggingface_hub import ModelFilter, snapshot_download
2
+ from huggingface_hub import snapshot_download
3
+ from huggingface_hub import ModelCard
4
+
5
+ import json
6
+ import time
7
+
8
+ from src.submission.check_validity import is_model_on_hub, check_model_card, get_model_tags
9
+ from src.envs import DYNAMIC_INFO_REPO, DYNAMIC_INFO_PATH, DYNAMIC_INFO_FILE_PATH, API, TOKEN
10
+
11
+ def update_models(file_path, models):
12
+ """
13
+ Search through all JSON files in the specified root folder and its subfolders,
14
+ and update the likes key in JSON dict from value of input dict
15
+ """
16
+ with open(file_path, "r") as f:
17
+ model_infos = json.load(f)
18
+ for model_id, data in model_infos.items():
19
+ if model_id not in models:
20
+ data['still_on_hub'] = False
21
+ data['likes'] = 0
22
+ data['downloads'] = 0
23
+ data['created_at'] = ""
24
+ continue
25
+
26
+ model_cfg = models[model_id]
27
+ data['likes'] = model_cfg.likes
28
+ data['downloads'] = model_cfg.downloads
29
+ data['created_at'] = str(model_cfg.created_at)
30
+ #data['params'] = get_model_size(model_cfg, data['precision'])
31
+ data['license'] = model_cfg.card_data.license if model_cfg.card_data is not None else ""
32
+
33
+ # Is the model still on the hub?
34
+ model_name = model_id
35
+ if model_cfg.card_data is not None and model_cfg.card_data.base_model is not None:
36
+ model_name = model_cfg.card_data.base_model # for adapters, we look at the parent model
37
+ still_on_hub, _, _ = is_model_on_hub(
38
+ model_name=model_name, revision=data.get("revision"), trust_remote_code=True, test_tokenizer=False, token=TOKEN
39
+ )
40
+ # If the model doesn't have a model card or a license, we consider it's deleted
41
+ if still_on_hub:
42
+ try:
43
+ status, _, model_card = check_model_card(model_id)
44
+ if status is False:
45
+ still_on_hub = False
46
+ except Exception:
47
+ model_card = None
48
+ still_on_hub = False
49
+ data['still_on_hub'] = still_on_hub
50
+
51
+ tags = get_model_tags(model_card, model_id) if still_on_hub else []
52
+
53
+ data["tags"] = tags
54
+
55
+ with open(file_path, 'w') as f:
56
+ json.dump(model_infos, f, indent=2)
57
+
58
+ def update_dynamic_files():
59
+ """ This will only update metadata for models already linked in the repo, not add missing ones.
60
+ """
61
+ snapshot_download(
62
+ repo_id=DYNAMIC_INFO_REPO, local_dir=DYNAMIC_INFO_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30
63
+ )
64
+
65
+ print("UPDATE_DYNAMIC: Loaded snapshot")
66
+ # Get models
67
+ start = time.time()
68
+
69
+ models = list(API.list_models(
70
+ #filter=ModelFilter(task="text-generation"),
71
+ task="text-generation",
72
+ full=False,
73
+ cardData=True,
74
+ fetch_config=True,
75
+ ))
76
+ id_to_model = {model.id : model for model in models}
77
+
78
+ print(f"UPDATE_DYNAMIC: Downloaded list of models in {time.time() - start:.2f} seconds")
79
+
80
+ start = time.time()
81
+
82
+ update_models(DYNAMIC_INFO_FILE_PATH, id_to_model)
83
+
84
+ print(f"UPDATE_DYNAMIC: updated in {time.time() - start:.2f} seconds")
85
+
86
+ API.upload_file(
87
+ path_or_fileobj=DYNAMIC_INFO_FILE_PATH,
88
+ path_in_repo=DYNAMIC_INFO_FILE_PATH.split("/")[-1],
89
+ repo_id=DYNAMIC_INFO_REPO,
90
+ repo_type="dataset",
91
+ commit_message=f"Daily request file update.",
92
+ )
93
+ print(f"UPDATE_DYNAMIC: pushed to hub")
94
+
src/submission/__pycache__/check_validity.cpython-313.pyc ADDED
Binary file (8.66 kB). View file
 
src/submission/__pycache__/submit.cpython-313.pyc ADDED
Binary file (4.47 kB). View file
 
src/submission/check_validity.py ADDED
@@ -0,0 +1,152 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import os
3
+ import re
4
+ from collections import defaultdict
5
+ from datetime import datetime, timedelta, timezone
6
+
7
+ import huggingface_hub
8
+ from huggingface_hub import ModelCard
9
+ from huggingface_hub.hf_api import ModelInfo
10
+ from transformers import AutoConfig
11
+ from transformers.models.auto.tokenization_auto import AutoTokenizer
12
+
13
+ from src.envs import HAS_HIGHER_RATE_LIMIT
14
+
15
+ def check_model_card(repo_id: str) -> tuple[bool, str]:
16
+ """Checks if the model card and license exist and have been filled"""
17
+ try:
18
+ card = ModelCard.load(repo_id)
19
+ except huggingface_hub.utils.EntryNotFoundError:
20
+ return False, "Please add a model card to your model to explain how you trained/fine-tuned it."
21
+
22
+ # Enforce license metadata
23
+ if card.data.license is None:
24
+ if not ("license_name" in card.data and "license_link" in card.data):
25
+ return False, (
26
+ "License not found. Please add a license to your model card using the `license` metadata or a"
27
+ " `license_name`/`license_link` pair."
28
+ )
29
+
30
+ # Enforce card content
31
+ if len(card.text) < 200:
32
+ return False, "Please add a description to your model card, it is too short."
33
+
34
+ return True, ""
35
+
36
+ def is_model_on_hub(model_name: str, revision: str, token: str = None, trust_remote_code=True, test_tokenizer=False) -> tuple[bool, str]:
37
+ """Checks if the model model_name is on the hub, and whether it (and its tokenizer) can be loaded with AutoClasses."""
38
+ try:
39
+ config = AutoConfig.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token)
40
+ if test_tokenizer:
41
+ try:
42
+ tk = AutoTokenizer.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token)
43
+ except ValueError as e:
44
+ return (
45
+ False,
46
+ f"uses a tokenizer which is not in a transformers release: {e}",
47
+ None
48
+ )
49
+ except Exception as e:
50
+ return (False, "'s tokenizer cannot be loaded. Is your tokenizer class in a stable transformers release, and correctly configured?", None)
51
+ return True, None, config
52
+
53
+ except ValueError:
54
+ return (
55
+ False,
56
+ "needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard.",
57
+ None
58
+ )
59
+
60
+ except Exception as e:
61
+ return False, "was not found on hub!", None
62
+
63
+
64
+ def get_model_size(model_info: ModelInfo, precision: str):
65
+ """Gets the model size from the configuration, or the model name if the configuration does not contain the information."""
66
+ try:
67
+ model_size = round(model_info.safetensors["total"] / 1e9, 3)
68
+ except (AttributeError, TypeError):
69
+ return 0 # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in app.py
70
+
71
+ size_factor = 8 if (precision == "GPTQ" or "gptq" in model_info.modelId.lower()) else 1
72
+ model_size = size_factor * model_size
73
+ return model_size
74
+
75
+ def get_model_arch(model_info: ModelInfo):
76
+ """Gets the model architecture from the configuration"""
77
+ return model_info.config.get("architectures", "Unknown")
78
+
79
+ def already_submitted_models(requested_models_dir: str) -> set[str]:
80
+ """Gather a list of already submitted models to avoid duplicates"""
81
+ depth = 1
82
+ file_names = []
83
+ users_to_submission_dates = defaultdict(list)
84
+
85
+ for root, _, files in os.walk(requested_models_dir):
86
+ current_depth = root.count(os.sep) - requested_models_dir.count(os.sep)
87
+ if current_depth == depth:
88
+ for file in files:
89
+ if not file.endswith(".json"):
90
+ continue
91
+ with open(os.path.join(root, file), "r") as f:
92
+ info = json.load(f)
93
+ file_names.append(f"{info['model']}_{info['revision']}_{info['precision']}")
94
+
95
+ # Select organisation
96
+ if info["model"].count("/") == 0 or "submitted_time" not in info:
97
+ continue
98
+ organisation, _ = info["model"].split("/")
99
+ users_to_submission_dates[organisation].append(info["submitted_time"])
100
+
101
+ return set(file_names), users_to_submission_dates
102
+
103
+ def user_submission_permission(org_or_user, users_to_submission_dates, rate_limit_period, rate_limit_quota):
104
+ if org_or_user not in users_to_submission_dates:
105
+ return True, ""
106
+ submission_dates = sorted(users_to_submission_dates[org_or_user])
107
+
108
+ time_limit = (datetime.now(timezone.utc) - timedelta(days=rate_limit_period)).strftime("%Y-%m-%dT%H:%M:%SZ")
109
+ submissions_after_timelimit = [d for d in submission_dates if d > time_limit]
110
+
111
+ num_models_submitted_in_period = len(submissions_after_timelimit)
112
+ if org_or_user in HAS_HIGHER_RATE_LIMIT:
113
+ rate_limit_quota = 2 * rate_limit_quota
114
+
115
+ if num_models_submitted_in_period > rate_limit_quota:
116
+ error_msg = f"Organisation or user `{org_or_user}`"
117
+ error_msg += f"already has {num_models_submitted_in_period} model requests submitted to the leaderboard "
118
+ error_msg += f"in the last {rate_limit_period} days.\n"
119
+ error_msg += (
120
+ "Please wait a couple of days before resubmitting, so that everybody can enjoy using the leaderboard 🤗"
121
+ )
122
+ return False, error_msg
123
+ return True, ""
124
+
125
+ def get_model_tags(model_card, model: str):
126
+ is_merge_from_metadata = False
127
+ is_moe_from_metadata = False
128
+
129
+ tags = []
130
+ if model_card is None:
131
+ return tags
132
+ if model_card.data.tags:
133
+ is_merge_from_metadata = "merge" in model_card.data.tags
134
+ is_moe_from_metadata = "moe" in model_card.data.tags
135
+ merge_keywords = ["merged model", "merge model"]
136
+ # If the model is a merge but not saying it in the metadata, we flag it
137
+ is_merge_from_model_card = any(keyword in model_card.text.lower() for keyword in merge_keywords)
138
+ if is_merge_from_model_card or is_merge_from_metadata:
139
+ tags.append("merge")
140
+ if not is_merge_from_metadata:
141
+ tags.append("flagged:undisclosed_merge")
142
+ moe_keywords = ["moe", "mixtral"]
143
+ is_moe_from_model_card = any(keyword in model_card.text.lower() for keyword in moe_keywords)
144
+ is_moe_from_name = "moe" in model.lower().replace("/", "-").replace("_", "-").split("-")
145
+ if is_moe_from_model_card or is_moe_from_name or is_moe_from_metadata:
146
+ tags.append("moe")
147
+ # We no longer tag undisclosed MoEs
148
+ #if not is_moe_from_metadata:
149
+ # tags.append("flagged:undisclosed_moe")
150
+
151
+
152
+ return tags
src/submission/submit.py ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import os
3
+ from datetime import datetime, timezone
4
+
5
+ from huggingface_hub import snapshot_download
6
+ from src.submission.check_validity import get_model_tags
7
+ from src.display.formatting import styled_error, styled_message, styled_warning
8
+ from src.envs import API, EVAL_REQUESTS_PATH, DYNAMIC_INFO_PATH, DYNAMIC_INFO_FILE_PATH, DYNAMIC_INFO_REPO, TOKEN, QUEUE_REPO, RATE_LIMIT_PERIOD, RATE_LIMIT_QUOTA
9
+ from src.submission.check_validity import (
10
+ already_submitted_models,
11
+ check_model_card,
12
+ get_model_size,
13
+ is_model_on_hub,
14
+ )
15
+
16
+ REQUESTED_MODELS = None
17
+ USERS_TO_SUBMISSION_DATES = None
18
+
19
+ def add_new_eval(
20
+ model: str,
21
+ model_api_url: str,
22
+ model_api_key: str,
23
+ model_api_name: str,
24
+ base_model: str,
25
+ revision: str,
26
+ precision: str,
27
+ private: str,
28
+ weight_type: str,
29
+ model_type: str,
30
+ runsh,
31
+ adapter
32
+ ):
33
+ global REQUESTED_MODELS
34
+ global USERS_TO_SUBMISSION_DATES
35
+ if not REQUESTED_MODELS:
36
+ REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH)
37
+
38
+ user_name = ""
39
+ model_path = model
40
+ if "/" in model:
41
+ user_name = model.split("/")[0]
42
+ model_path = model.split("/")[1]
43
+
44
+ precision = precision.split(" ")[0]
45
+ current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
46
+
47
+ if model_type is None:
48
+ model_type = ""
49
+ #return styled_error("Please select a model type.")
50
+
51
+ # Does the model actually exist?
52
+ if revision == "":
53
+ revision = "main"
54
+
55
+ architecture = "?"
56
+ downloads = 0
57
+ created_at = ""
58
+ # Is the model on the hub?
59
+ if len(model_api_url)==0:
60
+ #if weight_type in ["Delta", "Adapter"]:
61
+ # base_model_on_hub, error, _ = is_model_on_hub(model_name=base_model, revision=revision, token=TOKEN, test_tokenizer=True)
62
+ # if not base_model_on_hub:
63
+ # return styled_error(f'Base model "{base_model}" {error}')
64
+
65
+ #if not weight_type == "Adapter":
66
+ # model_on_hub, error, model_config = is_model_on_hub(model_name=model, revision=revision, test_tokenizer=True)
67
+ # if not model_on_hub:
68
+ # return styled_error(f'Model "{model}" {error}')
69
+ # if model_config is not None:
70
+ # architectures = getattr(model_config, "architectures", None)
71
+ # if architectures:
72
+ # architecture = ";".join(architectures)
73
+ # downloads = getattr(model_config, 'downloads', 0)
74
+ # created_at = getattr(model_config, 'created_at', '')
75
+ #if not weight_type == "Adapter":
76
+ # model_on_hub, error, _ = is_model_on_hub(model_name=model, revision=revision, token=TOKEN, test_tokenizer=True)
77
+ # if not model_on_hub:
78
+ # return styled_error(f'Model "{model}" {error}')
79
+
80
+ # Is the model info correctly filled?
81
+ try:
82
+ model_info = API.model_info(repo_id=model, revision=revision)
83
+ except Exception:
84
+ return styled_error("Could not get your model information. Please fill it up properly.")
85
+ model_size = get_model_size(model_info=model_info, precision=precision)
86
+
87
+ # Were the model card and license filled?
88
+ try:
89
+ license = model_info.cardData["license"]
90
+ except Exception:
91
+ return styled_error("Please select a license for your model")
92
+
93
+ modelcard_OK, error_msg = check_model_card(model)
94
+ if not modelcard_OK:
95
+ return styled_error(error_msg)
96
+ #tags = get_model_tags(model_card, model)
97
+ # TODO: tags
98
+ tags = []
99
+
100
+ likes = model_info.likes
101
+ else:
102
+ model_size = 0
103
+ license = ""
104
+ likes = 0
105
+ tags = []
106
+ downloads = 0
107
+
108
+ # Seems good, creating the eval
109
+ print("Adding new eval", runsh)
110
+ max_size = 5 * 1024 * 1024 # 5MB
111
+ if (runsh is not None) and (adapter is not None):
112
+ if os.path.getsize(runsh.name) > max_size:
113
+ return "错误:文件大小不能超过 5MB!"
114
+ if os.path.getsize(adapter.name) > max_size:
115
+ return "错误:文件大小不能超过 5MB!"
116
+ with open(runsh.name, "r") as f:
117
+ runsh = f.read()
118
+ with open(adapter.name, "r") as f:
119
+ adapter = f.read()
120
+ else:
121
+ runsh = ""
122
+ adapter = ""
123
+ eval_entry = {
124
+ "model": model,
125
+ "model_api_url": model_api_url,
126
+ "model_api_key": model_api_key,
127
+ "model_api_name": model_api_name,
128
+ "base_model": base_model,
129
+ "revision": revision,
130
+ "precision": precision,
131
+ "private": private,
132
+ "weight_type": weight_type,
133
+ "status": "PENDING",
134
+ "submitted_time": current_time,
135
+ "model_type": model_type,
136
+ #"likes": model_info.likes,
137
+ "params": model_size,
138
+ #"license": license,
139
+ "private": False,
140
+ "runsh": runsh,
141
+ "adapter": adapter,
142
+ }
143
+
144
+ supplementary_info = {
145
+ "likes": 0,
146
+ "license": license,
147
+ "still_on_hub": True,
148
+ "tags": tags,
149
+ "downloads": downloads,
150
+ "created_at": created_at
151
+ }
152
+
153
+ # Check for duplicate submission
154
+ if f"{model}_{revision}_{precision}" in REQUESTED_MODELS:
155
+ return styled_warning("This model has been already submitted.")
156
+
157
+ print("Creating eval file")
158
+ OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
159
+ os.makedirs(OUT_DIR, exist_ok=True)
160
+ out_path = f"{OUT_DIR}/{model_path}_eval_request_False_{precision}_{weight_type}.json"
161
+
162
+ with open(out_path, "w") as f:
163
+ f.write(json.dumps(eval_entry))
164
+
165
+ print("Uploading eval file")
166
+ API.upload_file(
167
+ path_or_fileobj=out_path,
168
+ path_in_repo=out_path.split("eval-queue/")[1],
169
+ repo_id=QUEUE_REPO,
170
+ repo_type="dataset",
171
+ commit_message=f"Add {model} to eval queue",
172
+ )
173
+
174
+ # We want to grab the latest version of the submission file to not accidentally overwrite it
175
+ snapshot_download(
176
+ repo_id=DYNAMIC_INFO_REPO, local_dir=DYNAMIC_INFO_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30
177
+ )
178
+
179
+ with open(DYNAMIC_INFO_FILE_PATH) as f:
180
+ all_supplementary_info = json.load(f)
181
+
182
+ all_supplementary_info[model] = supplementary_info
183
+ with open(DYNAMIC_INFO_FILE_PATH, "w") as f:
184
+ json.dump(all_supplementary_info, f, indent=2)
185
+
186
+ API.upload_file(
187
+ path_or_fileobj=DYNAMIC_INFO_FILE_PATH,
188
+ path_in_repo=DYNAMIC_INFO_FILE_PATH.split("/")[-1],
189
+ repo_id=DYNAMIC_INFO_REPO,
190
+ repo_type="dataset",
191
+ commit_message=f"Add {model} to dynamic info queue",
192
+ )
193
+
194
+ # Remove the local file
195
+ os.remove(out_path)
196
+
197
+ return styled_message(
198
+ "Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the model to show in the PENDING list."
199
+ )
src/tools/collections.py ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+ import pandas as pd
4
+ from huggingface_hub import add_collection_item, delete_collection_item, get_collection, update_collection_item
5
+ #from huggingface_hub.utils._errors import HfHubHTTPError
6
+ from pandas import DataFrame
7
+
8
+ from src.display.utils import AutoEvalColumn, ModelType
9
+ from src.envs import TOKEN, PATH_TO_COLLECTION
10
+
11
+ # Specific intervals for the collections
12
+ intervals = {
13
+ "1B": pd.Interval(0, 1.5, closed="right"),
14
+ "3B": pd.Interval(2.5, 3.5, closed="neither"),
15
+ "7B": pd.Interval(6, 8, closed="neither"),
16
+ "13B": pd.Interval(10, 14, closed="neither"),
17
+ "30B": pd.Interval(25, 35, closed="neither"),
18
+ "65B": pd.Interval(60, 70, closed="neither"),
19
+ }
20
+
21
+
22
+ def update_collections(df: DataFrame):
23
+ """This function updates the Open LLM Leaderboard model collection with the latest best models for
24
+ each size category and type.
25
+ """
26
+ collection = get_collection(collection_slug=PATH_TO_COLLECTION, token=TOKEN)
27
+ params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
28
+
29
+ cur_best_models = []
30
+
31
+ ix = 0
32
+ for type in ModelType:
33
+ if type.value.name == "":
34
+ continue
35
+ for size in intervals:
36
+ # We filter the df to gather the relevant models
37
+ type_emoji = [t[0] for t in type.value.symbol]
38
+ filtered_df = df[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
39
+
40
+ numeric_interval = pd.IntervalIndex([intervals[size]])
41
+ mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
42
+ filtered_df = filtered_df.loc[mask]
43
+
44
+ best_models = list(
45
+ filtered_df.sort_values(AutoEvalColumn.average.name, ascending=False)[AutoEvalColumn.dummy.name]
46
+ )
47
+ print(type.value.symbol, size, best_models[:10])
48
+
49
+ # We add them one by one to the leaderboard
50
+ for model in best_models:
51
+ ix += 1
52
+ cur_len_collection = len(collection.items)
53
+ try:
54
+ collection = add_collection_item(
55
+ PATH_TO_COLLECTION,
56
+ item_id=model,
57
+ item_type="model",
58
+ exists_ok=True,
59
+ note=f"Best {type.to_str(' ')} model of around {size} on the leaderboard today!",
60
+ token=TOKEN,
61
+ )
62
+ if (
63
+ len(collection.items) > cur_len_collection
64
+ ): # we added an item - we make sure its position is correct
65
+ item_object_id = collection.items[-1].item_object_id
66
+ update_collection_item(
67
+ collection_slug=PATH_TO_COLLECTION, item_object_id=item_object_id, position=ix
68
+ )
69
+ cur_len_collection = len(collection.items)
70
+ cur_best_models.append(model)
71
+ break
72
+ #except HfHubHTTPError:
73
+ except:
74
+ continue
75
+
76
+ collection = get_collection(PATH_TO_COLLECTION, token=TOKEN)
77
+ for item in collection.items:
78
+ if item.item_id not in cur_best_models:
79
+ try:
80
+ delete_collection_item(
81
+ collection_slug=PATH_TO_COLLECTION, item_object_id=item.item_object_id, token=TOKEN
82
+ )
83
+ #except HfHubHTTPError:
84
+ except:
85
+ continue
src/tools/datastatics.py ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import json
3
+ import datetime
4
+ from src.envs import API, EVAL_REQUESTS_PATH
5
+
6
+ def get_statics(save_path=EVAL_REQUESTS_PATH):
7
+ """Creates the different dataframes for the evaluation queues requestes"""
8
+ entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")]
9
+ all_evals = []
10
+
11
+ for entry in entries:
12
+ print("get_statics", entry)
13
+ if ".json" in entry:
14
+ file_path = os.path.join(save_path, entry)
15
+ with open(file_path) as fp:
16
+ data = json.load(fp)
17
+ all_evals.append(data)
18
+ elif ".md" not in entry:
19
+ sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if not e.startswith(".")]
20
+ for sub_entry in sub_entries:
21
+ file_path = os.path.join(save_path, entry, sub_entry)
22
+ with open(file_path) as fp:
23
+ data = json.load(fp)
24
+ all_evals.append(data)
25
+ finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"]
26
+
27
+ finished = len(finished_list)
28
+ submmit = len(all_evals)
29
+ print("get_stativs",finished, submmit)
30
+ with open("statics_eachday.json","r") as f:
31
+ statics = json.load(f)
32
+ print("get_statics",type(statics),str(datetime.datetime.now()), type(str(datetime.datetime.now())))
33
+ statics.append({"date":str(datetime.datetime.now()),"finished":finished, "submmit":submmit})
34
+ with open("statics_eachday.json","w") as f:
35
+ f.write(json.dumps(statics))
36
+
37
+
38
+ if __name__ == "__main__":
39
+ get_statics(EVAL_REQUESTS_PATH)
src/tools/model_backlinks.py ADDED
@@ -0,0 +1,1309 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ models = [
2
+ "uni-tianyan/Uni-TianYan",
3
+ "fangloveskari/ORCA_LLaMA_70B_QLoRA",
4
+ "garage-bAInd/Platypus2-70B-instruct",
5
+ "upstage/Llama-2-70b-instruct-v2",
6
+ "fangloveskari/Platypus_QLoRA_LLaMA_70b",
7
+ "yeontaek/llama-2-70B-ensemble-v5",
8
+ "TheBloke/Genz-70b-GPTQ",
9
+ "TheBloke/Platypus2-70B-Instruct-GPTQ",
10
+ "psmathur/model_007",
11
+ "yeontaek/llama-2-70B-ensemble-v4",
12
+ "psmathur/orca_mini_v3_70b",
13
+ "ehartford/Samantha-1.11-70b",
14
+ "MayaPH/GodziLLa2-70B",
15
+ "psmathur/model_007_v2",
16
+ "chargoddard/MelangeA-70b",
17
+ "ehartford/Samantha-1.1-70b",
18
+ "psmathur/model_009",
19
+ "upstage/Llama-2-70b-instruct",
20
+ "yeontaek/llama-2-70B-ensemble-v7",
21
+ "yeontaek/llama-2-70B-ensemble-v6",
22
+ "chargoddard/MelangeB-70b",
23
+ "yeontaek/llama-2-70B-ensemble-v3",
24
+ "chargoddard/MelangeC-70b",
25
+ "garage-bAInd/Camel-Platypus2-70B",
26
+ "yeontaek/llama-2-70B-ensemble-v2",
27
+ "garage-bAInd/Camel-Platypus2-70B",
28
+ "migtissera/Synthia-70B-v1.2",
29
+ "v2ray/LLaMA-2-Wizard-70B-QLoRA",
30
+ "quantumaikr/llama-2-70b-fb16-orca-chat-10k",
31
+ "v2ray/LLaMA-2-Wizard-70B-QLoRA",
32
+ "stabilityai/StableBeluga2",
33
+ "quantumaikr/llama-2-70b-fb16-guanaco-1k",
34
+ "garage-bAInd/Camel-Platypus2-70B",
35
+ "migtissera/Synthia-70B-v1.1",
36
+ "migtissera/Synthia-70B",
37
+ "psmathur/model_101",
38
+ "augtoma/qCammel70",
39
+ "augtoma/qCammel-70",
40
+ "augtoma/qCammel-70v1",
41
+ "augtoma/qCammel-70x",
42
+ "augtoma/qCammel-70-x",
43
+ "jondurbin/airoboros-l2-70b-gpt4-1.4.1",
44
+ "dfurman/llama-2-70b-dolphin-peft",
45
+ "jondurbin/airoboros-l2-70b-2.1",
46
+ "TheBloke/llama-2-70b-Guanaco-QLoRA-fp16",
47
+ "quantumaikr/QuantumLM-llama2-70B-Korean-LoRA",
48
+ "quantumaikr/quantumairk-llama-2-70B-instruct",
49
+ "psmathur/model_420",
50
+ "psmathur/model_51",
51
+ "garage-bAInd/Camel-Platypus2-70B",
52
+ "TheBloke/Airoboros-L2-70B-2.1-GPTQ",
53
+ "OpenAssistant/llama2-70b-oasst-sft-v10",
54
+ "garage-bAInd/Platypus2-70B",
55
+ "liuxiang886/llama2-70B-qlora-gpt4",
56
+ "upstage/llama-65b-instruct",
57
+ "quantumaikr/llama-2-70b-fb16-korean",
58
+ "NousResearch/Nous-Hermes-Llama2-70b",
59
+ "v2ray/LLaMA-2-Jannie-70B-QLoRA",
60
+ "jondurbin/airoboros-l2-70b-gpt4-m2.0",
61
+ "jondurbin/airoboros-l2-70b-gpt4-m2.0",
62
+ "OpenAssistant/llama2-70b-oasst-sft-v10",
63
+ "yeontaek/llama-2-70B-ensemble-v8",
64
+ "jondurbin/airoboros-l2-70b-gpt4-2.0",
65
+ "jarradh/llama2_70b_chat_uncensored",
66
+ "WizardLM/WizardMath-70B-V1.0",
67
+ "jordiclive/Llama-2-70b-oasst-1-200",
68
+ "WizardLM/WizardMath-70B-V1.0",
69
+ "jondurbin/airoboros-l2-70b-gpt4-2.0",
70
+ "OpenLemur/lemur-70b-chat-v1",
71
+ "tiiuae/falcon-180B",
72
+ "tiiuae/falcon-180B",
73
+ "stabilityai/StableBeluga1-Delta",
74
+ "psmathur/model_42_70b",
75
+ "psmathur/test_42_70b",
76
+ "TheBloke/fiction.live-Kimiko-V2-70B-fp16",
77
+ "tiiuae/falcon-180B",
78
+ "WizardLM/WizardMath-70B-V1.0",
79
+ "tiiuae/falcon-180B-chat",
80
+ "jondurbin/airoboros-l2-70b-gpt4-2.0",
81
+ "ehartford/samantha-1.1-llama-33b",
82
+ "ajibawa-2023/scarlett-33b",
83
+ "ddobokki/Llama-2-70b-orca-200k",
84
+ "TheBloke/gpt4-alpaca-lora_mlp-65B-HF",
85
+ "tiiuae/falcon-180B-chat",
86
+ "tiiuae/falcon-180B-chat",
87
+ "tiiuae/falcon-180B",
88
+ "TheBloke/Lemur-70B-Chat-v1-GPTQ",
89
+ "NousResearch/Nous-Puffin-70B",
90
+ "WizardLM/WizardLM-70B-V1.0",
91
+ "WizardLM/WizardMath-70B-V1.0",
92
+ "meta-llama/Llama-2-70b-hf",
93
+ "TheBloke/Llama-2-70B-fp16",
94
+ "Weyaxi/llama-2-alpacagpt4-1000step",
95
+ "WizardLM/WizardLM-70B-V1.0",
96
+ "simsim314/WizardLM-70B-V1.0-HF",
97
+ "simsim314/WizardLM-70B-V1.0-HF",
98
+ "WizardLM/WizardLM-70B-V1.0",
99
+ "openbmb/UltraLM-65b",
100
+ "psmathur/model_420_preview",
101
+ "WizardLM/WizardLM-70B-V1.0",
102
+ "simsim314/WizardLM-70B-V1.0-HF",
103
+ "OpenBuddy/openbuddy-llama2-70b-v10.1-bf16",
104
+ "upstage/llama-30b-instruct-2048",
105
+ "jondurbin/airoboros-65b-gpt4-1.2",
106
+ "TheBloke/guanaco-65B-HF",
107
+ "jondurbin/airoboros-65b-gpt4-1.3",
108
+ "meta-llama/Llama-2-70b-chat-hf",
109
+ "ValiantLabs/ShiningValiant",
110
+ "Faradaylab/Aria-70B",
111
+ "lilloukas/GPlatty-30B",
112
+ "TheBloke/VicUnlocked-alpaca-65B-QLoRA-fp16",
113
+ "jondurbin/airoboros-65b-gpt4-1.4-peft",
114
+ "jondurbin/airoboros-65b-gpt4-1.4",
115
+ "jondurbin/airoboros-65b-gpt4-2.0",
116
+ "TheBloke/WizardLM-70B-V1.0-GPTQ",
117
+ "TheBloke/WizardLM-70B-V1.0-GPTQ",
118
+ "ariellee/SuperPlatty-30B",
119
+ "jondurbin/airoboros-65b-gpt4-1.4",
120
+ "jondurbin/airoboros-65b-gpt4-2.0",
121
+ "yeontaek/llama-2-70b-IA3-guanaco",
122
+ "CalderaAI/30B-Lazarus",
123
+ "Aspik101/trurl-2-13b-pl-instruct_unload",
124
+ "ehartford/WizardLM-33B-V1.0-Uncensored",
125
+ "ehartford/WizardLM-33B-V1.0-Uncensored",
126
+ "OpenBuddy/openbuddy-llama-65b-v8-bf16",
127
+ "Aspik101/llama-30b-instruct-2048-PL-lora",
128
+ "h2oai/h2ogpt-research-oasst1-llama-65b",
129
+ "Aspik101/llama-30b-instruct-2048-PL-lora",
130
+ "CalderaAI/30B-Epsilon",
131
+ "Aspik101/llama-30b-2048-instruct-PL-lora_unload",
132
+ "jondurbin/airoboros-65b-gpt4-m2.0",
133
+ "jondurbin/airoboros-65b-gpt4-m2.0",
134
+ "Aeala/Alpaca-elina-65b",
135
+ "TheBloke/robin-65b-v2-fp16",
136
+ "TheBloke/gpt4-alpaca-lora-30b-HF",
137
+ "TheBloke/Llama-2-70B-chat-GPTQ",
138
+ "upstage/llama-30b-instruct",
139
+ "OpenLemur/lemur-70b-v1",
140
+ "lmsys/vicuna-33b-v1.3",
141
+ "ausboss/llama-30b-supercot",
142
+ "ai-business/Luban-13B",
143
+ "Henk717/airochronos-33B",
144
+ "lmsys/vicuna-33b-v1.3",
145
+ "Henk717/airochronos-33B",
146
+ "bavest/fin-llama-33b-merged",
147
+ "jondurbin/airoboros-33b-gpt4-1.4",
148
+ "YeungNLP/firefly-llama-30b",
149
+ "Aspik101/30B-Lazarus-instruct-PL-lora_unload",
150
+ "uukuguy/speechless-llama2-luban-orca-platypus-13b",
151
+ "xxyyy123/test_merge_p_ov1_w0.66_w0.5_n1",
152
+ "jondurbin/airoboros-33b-gpt4-1.2",
153
+ "TheBloke/alpaca-lora-65B-HF",
154
+ "bofenghuang/vigogne-33b-instruct",
155
+ "yeontaek/llama-2-13B-ensemble-v5",
156
+ "garage-bAInd/Platypus-30B",
157
+ "Open-Orca/OpenOrca-Platypus2-13B",
158
+ "kajdun/viwaai-30b_v4",
159
+ "lilloukas/Platypus-30B",
160
+ "Open-Orca/OpenOrca-Platypus2-13B",
161
+ "Henk717/chronoboros-33B",
162
+ "jondurbin/airoboros-33b-2.1",
163
+ "HiTZ/alpaca-lora-65b-en-pt-es-ca",
164
+ "quantumaikr/QuantumLM-70B-hf",
165
+ "uukuguy/speechless-llama2-13b",
166
+ "uukuguy/speechless-llama2-hermes-orca-platypus-13b",
167
+ "openaccess-ai-collective/manticore-30b-chat-pyg-alpha",
168
+ "LLMs/WizardLM-30B-V1.0",
169
+ "TheBloke/WizardLM-30B-fp16",
170
+ "openaccess-ai-collective/hippogriff-30b-chat",
171
+ "concedo/Vicuzard-30B-Uncensored",
172
+ "TFLai/OpenOrca-Platypus2-13B-QLoRA-0.80-epoch",
173
+ "huggingface/llama-65b",
174
+ "huggyllama/llama-65b",
175
+ "gaodrew/gaodrew-llama-30b-instruct-2048-Open-Platypus-100steps",
176
+ "uukuguy/speechless-llama2-hermes-orca-platypus-wizardlm-13b",
177
+ "Sao10K/Mythical-Destroyer-V2-L2-13B",
178
+ "camel-ai/CAMEL-33B-Combined-Data",
179
+ "dsvv-cair/alpaca-cleaned-llama-30b-bf16",
180
+ "MetaIX/GPT4-X-Alpasta-30b",
181
+ "garage-bAInd/Stable-Platypus2-13B",
182
+ "TFLai/Luban-Platypus2-13B-QLora-0.80-epoch",
183
+ "TheBloke/OpenOrca-Platypus2-13B-GPTQ",
184
+ "IkariDev/Athena-tmp",
185
+ "OpenBuddyEA/openbuddy-llama-30b-v7.1-bf16",
186
+ "OpenBuddyEA/openbuddy-llama-30b-v7.1-bf16",
187
+ "Open-Orca/OpenOrcaxOpenChat-Preview2-13B",
188
+ "psmathur/model_007_13b_v2",
189
+ "Aspik101/Vicuzard-30B-Uncensored-instruct-PL-lora_unload",
190
+ "jondurbin/airoboros-33b-gpt4-m2.0",
191
+ "Sao10K/Mythical-Destroyer-L2-13B",
192
+ "TheBloke/Wizard-Vicuna-30B-Uncensored-fp16",
193
+ "ehartford/Wizard-Vicuna-30B-Uncensored",
194
+ "TFLai/Nova-13B",
195
+ "TheBloke/robin-33B-v2-fp16",
196
+ "totally-not-an-llm/PuddleJumper-13b",
197
+ "Aeala/VicUnlocked-alpaca-30b",
198
+ "Yhyu13/oasst-rlhf-2-llama-30b-7k-steps-hf",
199
+ "jondurbin/airoboros-33b-gpt4",
200
+ "jondurbin/airoboros-33b-gpt4-m2.0",
201
+ "tiiuae/falcon-40b-instruct",
202
+ "psmathur/orca_mini_v3_13b",
203
+ "Aeala/GPT4-x-AlpacaDente-30b",
204
+ "MayaPH/GodziLLa-30B",
205
+ "jondurbin/airoboros-33b-gpt4-m2.0",
206
+ "TFLai/SpeechlessV1-Nova-13B",
207
+ "yeontaek/llama-2-13B-ensemble-v4",
208
+ "ajibawa-2023/carl-33b",
209
+ "jondurbin/airoboros-33b-gpt4-2.0",
210
+ "TFLai/Stable-Platypus2-13B-QLoRA-0.80-epoch",
211
+ "jondurbin/airoboros-33b-gpt4-1.3",
212
+ "TehVenom/oasst-sft-6-llama-33b-xor-MERGED-16bit",
213
+ "TFLai/OrcaMini-Platypus2-13B-QLoRA-0.80-epoch",
214
+ "jondurbin/airoboros-33b-gpt4-2.0",
215
+ "chargoddard/Chronorctypus-Limarobormes-13b",
216
+ "jondurbin/airoboros-33b-gpt4-1.3",
217
+ "Open-Orca/OpenOrca-Platypus2-13B",
218
+ "FelixChao/vicuna-33b-coder",
219
+ "FelixChao/vicuna-33b-coder",
220
+ "Gryphe/MythoMix-L2-13b",
221
+ "Aeala/Enterredaas-33b",
222
+ "yeontaek/llama-2-13B-ensemble-v1",
223
+ "TFLai/OpenOrcaPlatypus2-Platypus2-13B-QLora-0.80-epoch",
224
+ "TFLai/Ensemble5-Platypus2-13B-QLora-0.80-epoch",
225
+ "yeontaek/llama-2-13B-ensemble-v3",
226
+ "TFLai/MythoMix-Platypus2-13B-QLoRA-0.80-epoch",
227
+ "yihan6324/llama2-13b-instructmining-40k-sharegpt",
228
+ "timdettmers/guanaco-33b-merged",
229
+ "TFLai/EnsembleV5-Nova-13B",
230
+ "circulus/Llama-2-13b-orca-v1",
231
+ "Undi95/ReMM-SLERP-L2-13B",
232
+ "Gryphe/MythoMax-L2-13b",
233
+ "stabilityai/StableBeluga-13B",
234
+ "circulus/Llama-2-13b-orca-v1",
235
+ "ehartford/WizardLM-30B-Uncensored",
236
+ "The-Face-Of-Goonery/huginnv1.2",
237
+ "TheBloke/OpenOrcaxOpenChat-Preview2-13B-GPTQ",
238
+ "Sao10K/Stheno-L2-13B",
239
+ "bofenghuang/vigogne-2-13b-instruct",
240
+ "The-Face-Of-Goonery/Huginn-13b-FP16",
241
+ "grimpep/L2-MythoMax22b-instruct-Falseblock",
242
+ "TFLai/Nous-Hermes-Platypus2-13B-QLoRA-0.80-epoch",
243
+ "yeontaek/Platypus2xOpenOrca-13B-IA3-v4",
244
+ "yeontaek/Platypus2xOpenOrca-13B-IA3",
245
+ "yeontaek/Platypus2xOpenOrca-13B-IA3-ensemble",
246
+ "Open-Orca/LlongOrca-13B-16k",
247
+ "Sao10K/Stheno-Inverted-L2-13B",
248
+ "garage-bAInd/Camel-Platypus2-13B",
249
+ "digitous/Alpacino30b",
250
+ "NousResearch/Nous-Hermes-Llama2-13b",
251
+ "yeontaek/Platypus2xOpenOrca-13B-IA3-v3",
252
+ "TFLai/MythicalDestroyerV2-Platypus2-13B-QLora-0.80-epoch",
253
+ "TheBloke/VicUnlocked-30B-LoRA-HF",
254
+ "Undi95/Nous-Hermes-13B-Code",
255
+ "The-Face-Of-Goonery/Chronos-Beluga-v2-13bfp16",
256
+ "NousResearch/Nous-Hermes-Llama2-13b",
257
+ "Monero/WizardLM-Uncensored-SuperCOT-StoryTelling-30b",
258
+ "TheBloke/Wizard-Vicuna-30B-Uncensored-GPTQ",
259
+ "Open-Orca/OpenOrcaxOpenChat-Preview2-13B",
260
+ "Austism/chronos-hermes-13b-v2",
261
+ "yeontaek/Platypus2xOpenOrca-13B-IA3-v2.1",
262
+ "yeontaek/Platypus2xOpenOrca-13B-IA3-v2",
263
+ "Gryphe/MythoLogic-L2-13b",
264
+ "augtoma/qCammel-13",
265
+ "YeungNLP/firefly-llama2-13b-v1.2",
266
+ "Aspik101/StableBeluga-13B-instruct-PL-lora_unload",
267
+ "andreaskoepf/llama2-13b-megacode2_min100",
268
+ "rombodawg/LosslessMegaCoder-llama2-13b-mini",
269
+ "yulan-team/YuLan-Chat-2-13b-fp16",
270
+ "elinas/chronos-33b",
271
+ "YeungNLP/firefly-llama2-13b",
272
+ "Sao10K/Medusa-13b",
273
+ "OptimalScale/robin-65b-v2-delta",
274
+ "minlik/chinese-alpaca-33b-merged",
275
+ "OpenAssistant/llama2-13b-megacode2-oasst",
276
+ "TheBloke/OpenAssistant-SFT-7-Llama-30B-HF",
277
+ "Undi95/UndiMix-v1-13b",
278
+ "ehartford/Samantha-1.11-13b",
279
+ "beaugogh/Llama2-13b-sharegpt4",
280
+ "Aeala/GPT4-x-AlpacaDente2-30b",
281
+ "luffycodes/nash-vicuna-13b-v1dot5-ep2-w-rag-w-simple",
282
+ "WizardLM/WizardLM-13B-V1.1",
283
+ "uukuguy/speechless-orca-platypus-coig-lite-2k-0.6e-13b",
284
+ "huggyllama/llama-30b",
285
+ "Undi95/ReMM-L2-13B-PIPPA",
286
+ "Undi95/ReMM-L2-13B",
287
+ "gaodrew/gaodrew-gorgonzola-13b",
288
+ "lmsys/vicuna-13b-v1.5",
289
+ "yeontaek/Platypus2xOpenOrca-13B-LoRa",
290
+ "Yhyu13/llama-30B-hf-openassitant",
291
+ "huggingface/llama-30b",
292
+ "lmsys/vicuna-13b-v1.5",
293
+ "TFLai/Athena-Platypus2-13B-QLora-0.80-epoch",
294
+ "TheBloke/dromedary-65b-lora-HF",
295
+ "yeontaek/llama-2-13b-Beluga-QLoRA",
296
+ "The-Face-Of-Goonery/Huginn-13b-V4",
297
+ "The-Face-Of-Goonery/Huginn-13b-v4.5",
298
+ "The-Face-Of-Goonery/Huginn-v3-13b",
299
+ "tiiuae/falcon-40b",
300
+ "WhoTookMyAmogusNickname/NewHope_HF_not_official",
301
+ "gaodrew/OpenOrca-Platypus2-13B-thera-1250",
302
+ "SLAM-group/NewHope",
303
+ "garage-bAInd/Platypus2-13B",
304
+ "migtissera/Synthia-13B",
305
+ "elinas/chronos-13b-v2",
306
+ "mosaicml/mpt-30b-chat",
307
+ "CHIH-HUNG/llama-2-13b-OpenOrca_5w",
308
+ "uukuguy/speechless-hermes-coig-lite-13b",
309
+ "TheBloke/tulu-30B-fp16",
310
+ "uukuguy/speechless-hermes-coig-lite-13b",
311
+ "xDAN-AI/xDAN_13b_l2_lora",
312
+ "lmsys/vicuna-13b-v1.5-16k",
313
+ "openchat/openchat_v3.1",
314
+ "CHIH-HUNG/llama-2-13b-dolphin_5w",
315
+ "Aspik101/vicuna-13b-v1.5-PL-lora_unload",
316
+ "Undi95/MLewd-L2-13B",
317
+ "ehartford/minotaur-llama2-13b-qlora",
318
+ "kajdun/iubaris-13b-v3",
319
+ "TFLai/Limarp-Platypus2-13B-QLoRA-0.80-epoch",
320
+ "openchat/openchat_v3.1",
321
+ "uukuguy/speechless-orca-platypus-coig-lite-4k-0.6e-13b",
322
+ "ziqingyang/chinese-alpaca-2-13b",
323
+ "TFLai/Airboros2.1-Platypus2-13B-QLora-0.80-epoch",
324
+ "yeontaek/llama-2-13b-Guanaco-QLoRA",
325
+ "lmsys/vicuna-13b-v1.5-16k",
326
+ "ehartford/based-30b",
327
+ "kingbri/airolima-chronos-grad-l2-13B",
328
+ "openchat/openchat_v3.2",
329
+ "uukuguy/speechless-orca-platypus-coig-lite-4k-0.5e-13b",
330
+ "yeontaek/Platypus2-13B-LoRa",
331
+ "kingbri/chronolima-airo-grad-l2-13B",
332
+ "openchat/openchat_v3.2",
333
+ "TFLai/PuddleJumper-Platypus2-13B-QLoRA-0.80-epoch",
334
+ "shareAI/llama2-13b-Chinese-chat",
335
+ "ehartford/WizardLM-1.0-Uncensored-Llama2-13b",
336
+ "Aspik101/Redmond-Puffin-13B-instruct-PL-lora_unload",
337
+ "yeontaek/llama-2-13B-ensemble-v6",
338
+ "WizardLM/WizardLM-13B-V1.2",
339
+ "TheBloke/WizardLM-13B-V1.1-GPTQ",
340
+ "bhenrym14/airophin-13b-pntk-16k-fp16",
341
+ "ehartford/WizardLM-1.0-Uncensored-Llama2-13b",
342
+ "Mikael110/llama-2-13b-guanaco-fp16",
343
+ "yeontaek/airoboros-2.1-llama-2-13B-QLoRa",
344
+ "CalderaAI/13B-Legerdemain-L2",
345
+ "grimpep/llama2-22b-wizard_vicuna",
346
+ "grimpep/llama2-22B-GPLATTY",
347
+ "bhenrym14/airophin-13b-pntk-16k-fp16",
348
+ "yeontaek/llama-2-13b-QLoRA",
349
+ "OpenAssistant/llama2-13b-orca-8k-3319",
350
+ "TheBloke/WizardLM-13B-V1-1-SuperHOT-8K-fp16",
351
+ "duliadotio/dulia-13b-8k-alpha",
352
+ "Undi95/LewdEngine",
353
+ "OpenBuddy/openbuddy-llama2-13b-v8.1-fp16",
354
+ "CHIH-HUNG/llama-2-13b-open_orca_20w",
355
+ "bhenrym14/airoboros-33b-gpt4-1.4.1-lxctx-PI-16384-fp16",
356
+ "FlagAlpha/Llama2-Chinese-13b-Chat",
357
+ "LLMs/WizardLM-13B-V1.0",
358
+ "chansung/gpt4-alpaca-lora-13b-decapoda-1024",
359
+ "TheBloke/wizardLM-13B-1.0-fp16",
360
+ "digitous/13B-Chimera",
361
+ "yeontaek/Platypus2xOpenOrcaxGuanaco-13B-LoRa",
362
+ "jondurbin/airoboros-l2-13b-2.1",
363
+ "Monero/WizardLM-30B-Uncensored-Guanaco-SuperCOT-30b",
364
+ "TheBloke/UltraLM-13B-fp16",
365
+ "openaccess-ai-collective/minotaur-13b-fixed",
366
+ "NousResearch/Redmond-Puffin-13B",
367
+ "KoboldAI/LLaMA2-13B-Holomax",
368
+ "Lajonbot/WizardLM-13B-V1.2-PL-lora_unload",
369
+ "yeontaek/Platypus2-13B-LoRa-v2",
370
+ "TheBloke/airoboros-13B-HF",
371
+ "jondurbin/airoboros-13b",
372
+ "jjaaaww/posi_13b",
373
+ "CoolWP/llama-2-13b-guanaco-fp16",
374
+ "yeontaek/Platypus2-13B-QLoRa",
375
+ "h2oai/h2ogpt-research-oig-oasst1-512-30b",
376
+ "dfurman/llama-2-13b-guanaco-peft",
377
+ "NousResearch/Redmond-Puffin-13B",
378
+ "pe-nlp/llama-2-13b-platypus-vicuna-wizard",
379
+ "CHIH-HUNG/llama-2-13b-dolphin_20w",
380
+ "NousResearch/Nous-Hermes-13b",
381
+ "NobodyExistsOnTheInternet/GiftedConvo13bLoraNoEconsE4",
382
+ "ehartford/Wizard-Vicuna-13B-Uncensored",
383
+ "TheBloke/Wizard-Vicuna-13B-Uncensored-HF",
384
+ "openchat/openchat_v3.2_super",
385
+ "bhenrym14/airophin-v2-13b-PI-8k-fp16",
386
+ "openaccess-ai-collective/manticore-13b",
387
+ "The-Face-Of-Goonery/Huginn-22b-Prototype",
388
+ "jphme/Llama-2-13b-chat-german",
389
+ "grimpep/llama2-28B-Airo03",
390
+ "TheBloke/Kimiko-v2-13B-fp16",
391
+ "FPHam/Free_Sydney_13b_HF",
392
+ "lmsys/vicuna-13b-v1.3",
393
+ "FelixChao/llama2-13b-math1.1",
394
+ "CalderaAI/13B-BlueMethod",
395
+ "meta-llama/Llama-2-13b-chat-hf",
396
+ "deepse/CodeUp-Llama-2-13b-chat-hf",
397
+ "WizardLM/WizardMath-13B-V1.0",
398
+ "WizardLM/WizardMath-13B-V1.0",
399
+ "HyperbeeAI/Tulpar-7b-v0",
400
+ "xxyyy123/test_qkvo_adptor",
401
+ "xxyyy123/mc_data_30k_from_platpus_orca_7b_10k_v1_lora_qkvo_rank14_v2",
402
+ "openchat/openchat_v2_w",
403
+ "FelixChao/llama2-13b-math1.1",
404
+ "psmathur/orca_mini_v3_7b",
405
+ "TehVenom/Metharme-13b-Merged",
406
+ "xxyyy123/10k_v1_lora_qkvo_rank14_v3",
407
+ "OpenAssistant/llama2-13b-orca-v2-8k-3166",
408
+ "openaccess-ai-collective/wizard-mega-13b",
409
+ "jondurbin/airoboros-13b-gpt4-1.4",
410
+ "jondurbin/airoboros-13b-gpt4-1.4-fp16",
411
+ "Monero/Manticore-13b-Chat-Pyg-Guanaco",
412
+ "FelixChao/llama2-13b-math1.2",
413
+ "chargoddard/platypus-2-22b-relora",
414
+ "FelixChao/llama2-13b-math1.2",
415
+ "Gryphe/MythoBoros-13b",
416
+ "CalderaAI/13B-Ouroboros",
417
+ "OpenAssistant/llama2-13b-orca-v2-8k-3166",
418
+ "heegyu/LIMA2-13b-hf",
419
+ "digitous/13B-HyperMantis",
420
+ "Gryphe/MythoLogic-13b",
421
+ "TheBloke/Airoboros-L2-13B-2.1-GPTQ",
422
+ "chargoddard/platypus2-22b-relora",
423
+ "openchat/openchat_v2",
424
+ "yeontaek/Platypus2-13B-IA3",
425
+ "stabilityai/StableBeluga-7B",
426
+ "circulus/Llama-2-7b-orca-v1",
427
+ "budecosystem/genz-13b-v2",
428
+ "TheBloke/gpt4-x-vicuna-13B-HF",
429
+ "NobodyExistsOnTheInternet/GiftedConvo13bLoraNoEcons",
430
+ "zarakiquemparte/zarafusionex-1.1-l2-7b",
431
+ "Lajonbot/tableBeluga-7B-instruct-pl-lora_unload",
432
+ "jondurbin/airoboros-13b-gpt4",
433
+ "gaodrew/gaodrew-gorgonzola-13b",
434
+ "jondurbin/airoboros-13b-gpt4-1.1",
435
+ "TheBloke/gpt4-alpaca-lora-13B-HF",
436
+ "zarakiquemparte/zarablendex-vq-l2-7b",
437
+ "openaccess-ai-collective/manticore-13b-chat-pyg",
438
+ "Lajonbot/Llama-2-13b-hf-instruct-pl-lora_unload",
439
+ "NobodyExistsOnTheInternet/PuffedLIMA13bQLORA",
440
+ "xxyyy123/10k_v1_lora_qkvo_rank28_v2",
441
+ "jondurbin/airoboros-l2-13b-gpt4-1.4.1",
442
+ "dhmeltzer/Llama-2-13b-hf-eli5-wiki-1024_r_64_alpha_16",
443
+ "NobodyExistsOnTheInternet/PuffedConvo13bLoraE4",
444
+ "yihan6324/llama2-7b-instructmining-40k-sharegpt",
445
+ "CHIH-HUNG/llama-2-13b-Open_Platypus_and_ccp_2.6w",
446
+ "Aeala/GPT4-x-Alpasta-13b",
447
+ "psmathur/orca_mini_v2_13b",
448
+ "YeungNLP/firefly-llama-13b",
449
+ "psmathur/orca_mini_v2_13b",
450
+ "zarakiquemparte/zarafusionix-l2-7b",
451
+ "yihan6324/llama2-7b-instructmining-60k-sharegpt",
452
+ "yihan6324/llama-2-7b-instructmining-60k-sharegpt",
453
+ "layoric/llama-2-13b-code-alpaca",
454
+ "bofenghuang/vigogne-13b-instruct",
455
+ "Lajonbot/vicuna-13b-v1.3-PL-lora_unload",
456
+ "lvkaokao/llama2-7b-hf-chat-lora-v3",
457
+ "ehartford/dolphin-llama-13b",
458
+ "YeungNLP/firefly-llama-13b-v1.2",
459
+ "TheBloke/Kimiko-13B-fp16",
460
+ "kevinpro/Vicuna-13B-CoT",
461
+ "eachadea/vicuna-13b-1.1",
462
+ "pillowtalks-ai/delta13b",
463
+ "TheBloke/vicuna-13B-1.1-HF",
464
+ "TheBloke/Vicuna-13B-CoT-fp16",
465
+ "lmsys/vicuna-13b-delta-v1.1",
466
+ "lmsys/vicuna-13b-v1.1",
467
+ "xxyyy123/20k_v1_lora_qkvo_rank14_v2",
468
+ "TheBloke/guanaco-13B-HF",
469
+ "TheBloke/vicuna-13b-v1.3.0-GPTQ",
470
+ "edor/Stable-Platypus2-mini-7B",
471
+ "totally-not-an-llm/EverythingLM-13b-V2-16k",
472
+ "zarakiquemparte/zaraxe-l2-7b",
473
+ "beaugogh/Llama2-7b-openorca-mc-v2",
474
+ "TheBloke/Nous-Hermes-13B-SuperHOT-8K-fp16",
475
+ "quantumaikr/QuantumLM",
476
+ "jondurbin/airoboros-13b-gpt4-1.2",
477
+ "TheBloke/robin-13B-v2-fp16",
478
+ "TFLai/llama-2-13b-4bit-alpaca-gpt4",
479
+ "yihan6324/llama2-7b-instructmining-orca-40k",
480
+ "dvruette/oasst-llama-13b-2-epochs",
481
+ "Open-Orca/LlongOrca-7B-16k",
482
+ "Aspik101/Nous-Hermes-13b-pl-lora_unload",
483
+ "ehartford/Samantha-1.11-CodeLlama-34b",
484
+ "nkpz/llama2-22b-chat-wizard-uncensored",
485
+ "bofenghuang/vigogne-13b-chat",
486
+ "beaugogh/Llama2-7b-openorca-mc-v1",
487
+ "OptimalScale/robin-13b-v2-delta",
488
+ "pe-nlp/llama-2-13b-vicuna-wizard",
489
+ "chargoddard/llama2-22b",
490
+ "gywy/llama2-13b-chinese-v1",
491
+ "frank098/Wizard-Vicuna-13B-juniper",
492
+ "IGeniusDev/llama13B-quant8-testv1-openorca-customdataset",
493
+ "CHIH-HUNG/llama-2-13b-huangyt_Fintune_1_17w-gate_up_down_proj",
494
+ "eachadea/vicuna-13b",
495
+ "yihan6324/llama2-7b-instructmining-orca-90k",
496
+ "chargoddard/llama2-22b-blocktriangular",
497
+ "luffycodes/mcq-vicuna-13b-v1.5",
498
+ "Yhyu13/chimera-inst-chat-13b-hf",
499
+ "luffycodes/mcq-vicuna-13b-v1.5",
500
+ "chargoddard/ypotryll-22b-epoch2-qlora",
501
+ "totally-not-an-llm/EverythingLM-13b-16k",
502
+ "luffycodes/mcq-hal-vicuna-13b-v1.5",
503
+ "openaccess-ai-collective/minotaur-13b",
504
+ "IGeniusDev/llama13B-quant8-testv1-openorca-customdataset",
505
+ "chargoddard/llama2-22b-blocktriangular",
506
+ "TFLai/Platypus2-13B-QLoRA-0.80-epoch",
507
+ "meta-llama/Llama-2-13b-hf",
508
+ "CHIH-HUNG/llama-2-13b-huangyt_FINETUNE2_3w-gate_up_down_proj",
509
+ "luffycodes/mcq-hal-vicuna-13b-v1.5",
510
+ "TheBloke/Llama-2-13B-fp16",
511
+ "TaylorAI/Flash-Llama-13B",
512
+ "shareAI/bimoGPT-llama2-13b",
513
+ "wahaha1987/llama_13b_sharegpt94k_fastchat",
514
+ "openchat/openchat_8192",
515
+ "CHIH-HUNG/llama-2-13b-huangyt_Fintune_1_17w-q_k_v_o_proj",
516
+ "dvruette/llama-13b-pretrained-sft-do2",
517
+ "CHIH-HUNG/llama-2-13b-alpaca-test",
518
+ "OpenBuddy/openbuddy-llama2-13b-v11.1-bf16",
519
+ "CHIH-HUNG/llama-2-13b-FINETUNE2_TEST_2.2w",
520
+ "project-baize/baize-v2-13b",
521
+ "jondurbin/airoboros-l2-13b-gpt4-m2.0",
522
+ "yeontaek/Platypus2xOpenOrca-13B-LoRa-v2",
523
+ "CHIH-HUNG/llama-2-13b-huangyt_FINETUNE2_3w",
524
+ "xzuyn/Alpacino-SuperCOT-13B",
525
+ "jondurbin/airoboros-l2-13b-gpt4-2.0",
526
+ "aiplanet/effi-13b",
527
+ "clibrain/Llama-2-13b-ft-instruct-es",
528
+ "CHIH-HUNG/llama-2-13b-huangyt_Fintune_1_17w",
529
+ "bofenghuang/vigogne-2-7b-instruct",
530
+ "CHIH-HUNG/llama-2-13b-huangyt_FINETUNE2_3w-q_k_v_o_proj",
531
+ "bofenghuang/vigogne-2-7b-chat",
532
+ "aiplanet/effi-13b",
533
+ "haonan-li/bactrian-x-llama-13b-merged",
534
+ "beaugogh/Llama2-7b-sharegpt4",
535
+ "HWERI/Llama2-7b-sharegpt4",
536
+ "jondurbin/airoboros-13b-gpt4-1.3",
537
+ "jondurbin/airoboros-c34b-2.1",
538
+ "junelee/wizard-vicuna-13b",
539
+ "TheBloke/wizard-vicuna-13B-HF",
540
+ "Open-Orca/OpenOrca-Preview1-13B",
541
+ "TheBloke/h2ogpt-oasst1-512-30B-HF",
542
+ "TheBloke/Llama-2-13B-GPTQ",
543
+ "camel-ai/CAMEL-13B-Combined-Data",
544
+ "lmsys/vicuna-7b-v1.5",
545
+ "lmsys/vicuna-7b-v1.5-16k",
546
+ "lmsys/vicuna-7b-v1.5",
547
+ "ausboss/llama-13b-supercot",
548
+ "TheBloke/tulu-13B-fp16",
549
+ "NousResearch/Nous-Hermes-llama-2-7b",
550
+ "jlevin/guanaco-13b-llama-2",
551
+ "lmsys/vicuna-7b-v1.5-16k",
552
+ "dvruette/llama-13b-pretrained",
553
+ "nkpz/llama2-22b-daydreamer-v3",
554
+ "dvruette/llama-13b-pretrained-dropout",
555
+ "jondurbin/airoboros-l2-13b-2.1",
556
+ "LLMs/Stable-Vicuna-13B",
557
+ "64bits/LexPodLM-13B",
558
+ "lizhuang144/llama_mirror_13b_v1.0",
559
+ "TheBloke/stable-vicuna-13B-HF",
560
+ "zarakiquemparte/zaraxls-l2-7b",
561
+ "TheBloke/Llama-2-13B-GPTQ",
562
+ "Kiddyz/testlm-3",
563
+ "migtissera/Synthia-7B",
564
+ "zarakiquemparte/zarablend-l2-7b",
565
+ "mosaicml/mpt-30b-instruct",
566
+ "PocketDoc/Dans-PileOfSets-Mk1-llama-13b-merged",
567
+ "vonjack/Qwen-LLaMAfied-HFTok-7B-Chat",
568
+ "l3utterfly/llama2-7b-layla",
569
+ "Lajonbot/vicuna-7b-v1.5-PL-lora_unload",
570
+ "heegyu/LIMA-13b-hf",
571
+ "frank098/WizardLM_13B_juniper",
572
+ "ashercn97/manatee-7b",
573
+ "chavinlo/gpt4-x-alpaca",
574
+ "PocketDoc/Dans-PersonalityEngine-13b",
575
+ "ehartford/WizardLM-1.0-Uncensored-CodeLlama-34b",
576
+ "digitous/Alpacino13b",
577
+ "edor/Hermes-Platypus2-mini-7B",
578
+ "lvkaokao/llama2-7b-hf-chat-lora-v2",
579
+ "Kiddyz/testlm-1-1",
580
+ "Kiddyz/testlm",
581
+ "Kiddyz/testlm-1",
582
+ "Kiddyz/testlm2",
583
+ "radm/Philosophy-Platypus2-13b",
584
+ "aiplanet/effi-13b",
585
+ "Harshvir/Llama-2-7B-physics",
586
+ "YeungNLP/firefly-ziya-13b",
587
+ "LinkSoul/Chinese-Llama-2-7b",
588
+ "PeanutJar/LLaMa-2-PeanutButter_v10-7B",
589
+ "OpenBuddy/openbuddy-llama2-13b-v11-bf16",
590
+ "StudentLLM/Alpagasus-2-13B-QLoRA-pipeline",
591
+ "meta-llama/Llama-2-13b-hf",
592
+ "WizardLM/WizardCoder-Python-34B-V1.0",
593
+ "dvruette/llama-13b-pretrained-sft-epoch-1",
594
+ "camel-ai/CAMEL-13B-Role-Playing-Data",
595
+ "ziqingyang/chinese-llama-2-13b",
596
+ "rombodawg/LosslessMegaCoder-llama2-7b-mini",
597
+ "TheBloke/koala-13B-HF",
598
+ "lmsys/vicuna-7b-delta-v1.1",
599
+ "eachadea/vicuna-7b-1.1",
600
+ "Ejafa/vicuna_7B_vanilla_1.1",
601
+ "lvkaokao/llama2-7b-hf-chat-lora",
602
+ "OpenBuddy/openbuddy-atom-13b-v9-bf16",
603
+ "Norquinal/llama-2-7b-claude-chat-rp",
604
+ "Danielbrdz/Barcenas-7b",
605
+ "heegyu/WizardVicuna2-13b-hf",
606
+ "meta-llama/Llama-2-7b-chat-hf",
607
+ "PeanutJar/LLaMa-2-PeanutButter_v14-7B",
608
+ "PeanutJar/LLaMa-2-PeanutButter_v4-7B",
609
+ "davzoku/cria-llama2-7b-v1.3",
610
+ "OpenBuddy/openbuddy-atom-13b-v9-bf16",
611
+ "lvkaokao/llama2-7b-hf-instruction-lora",
612
+ "Tap-M/Luna-AI-Llama2-Uncensored",
613
+ "ehartford/Samantha-1.11-7b",
614
+ "WizardLM/WizardCoder-Python-34B-V1.0",
615
+ "TheBloke/Manticore-13B-Chat-Pyg-Guanaco-SuperHOT-8K-GPTQ",
616
+ "Mikael110/llama-2-7b-guanaco-fp16",
617
+ "garage-bAInd/Platypus2-7B",
618
+ "PeanutJar/LLaMa-2-PeanutButter_v18_B-7B",
619
+ "mosaicml/mpt-30b",
620
+ "garage-bAInd/Platypus2-7B",
621
+ "huggingface/llama-13b",
622
+ "dvruette/oasst-llama-13b-1000-steps",
623
+ "jordiclive/gpt4all-alpaca-oa-codealpaca-lora-13b",
624
+ "huggyllama/llama-13b",
625
+ "Voicelab/trurl-2-7b",
626
+ "TFLai/llama-13b-4bit-alpaca",
627
+ "gywy/llama2-13b-chinese-v2",
628
+ "lmsys/longchat-13b-16k",
629
+ "Aspik101/trurl-2-7b-pl-instruct_unload",
630
+ "WizardLM/WizardMath-7B-V1.0",
631
+ "Norquinal/llama-2-7b-claude-chat",
632
+ "TheTravellingEngineer/llama2-7b-chat-hf-dpo",
633
+ "HuggingFaceH4/starchat-beta",
634
+ "joehuangx/spatial-vicuna-7b-v1.5-LoRA",
635
+ "conceptofmind/LLongMA-2-13b-16k",
636
+ "tianyil1/denas-llama2",
637
+ "lmsys/vicuna-7b-v1.3",
638
+ "conceptofmind/LLongMA-2-13b-16k",
639
+ "openchat/opencoderplus",
640
+ "ajibawa-2023/scarlett-7b",
641
+ "dhmeltzer/llama-7b-SFT_eli5_wiki65k_1024_r_64_alpha_16_merged",
642
+ "psyche/kollama2-7b-v2",
643
+ "heegyu/LIMA2-7b-hf",
644
+ "dhmeltzer/llama-7b-SFT-qlora-eli5-wiki_DPO_ds_RM_top_2_1024_r_64_alpha_16",
645
+ "abhishek/llama2guanacotest",
646
+ "jondurbin/airoboros-l2-7b-2.1",
647
+ "llama-anon/instruct-13b",
648
+ "FelixChao/vicuna-7B-physics",
649
+ "Aspik101/Llama-2-7b-hf-instruct-pl-lora_unload",
650
+ "shibing624/chinese-alpaca-plus-13b-hf",
651
+ "davzoku/cria-llama2-7b-v1.3_peft",
652
+ "quantumaikr/llama-2-7b-hf-guanaco-1k",
653
+ "togethercomputer/Llama-2-7B-32K-Instruct",
654
+ "sia-ai/llama-2-7b-1-percent-open-orca-1000-steps-v0",
655
+ "TheTravellingEngineer/llama2-7b-hf-guanaco",
656
+ "Lajonbot/Llama-2-7b-chat-hf-instruct-pl-lora_unload",
657
+ "jondurbin/airoboros-l2-7b-gpt4-1.4.1",
658
+ "wahaha1987/llama_7b_sharegpt94k_fastchat",
659
+ "FelixChao/vicuna-7B-chemical",
660
+ "TinyPixel/llama2-7b-oa",
661
+ "chaoyi-wu/MedLLaMA_13B",
662
+ "edor/Platypus2-mini-7B",
663
+ "RoversX/llama-2-7b-hf-small-shards-Samantha-V1-SFT",
664
+ "venkycs/llama-v2-7b-32kC-Security",
665
+ "psyche/kollama2-7b",
666
+ "Fredithefish/Guanaco-7B-Uncensored",
667
+ "TheTravellingEngineer/llama2-7b-chat-hf-guanaco",
668
+ "ehartford/WizardLM-13B-Uncensored",
669
+ "PocketDoc/Dans-CreepingSenseOfDoom",
670
+ "wenge-research/yayi-7b-llama2",
671
+ "georgesung/llama2_7b_chat_uncensored",
672
+ "TinyPixel/llama2-7b-instruct",
673
+ "quantumaikr/QuantumLM-7B",
674
+ "xzuyn/MedicWizard-7B",
675
+ "wenge-research/yayi-7b-llama2",
676
+ "TinyPixel/lima-test",
677
+ "elyza/ELYZA-japanese-Llama-2-7b-instruct",
678
+ "lgaalves/llama-2-7b-hf_open-platypus",
679
+ "ziqingyang/chinese-alpaca-2-7b",
680
+ "TehVenom/Pygmalion-Vicuna-1.1-7b",
681
+ "meta-llama/Llama-2-7b-hf",
682
+ "bongchoi/test-llama2-7b",
683
+ "TaylorAI/Flash-Llama-7B",
684
+ "TheTravellingEngineer/llama2-7b-chat-hf-v2",
685
+ "TheTravellingEngineer/llama2-7b-chat-hf-v4",
686
+ "kashif/stack-llama-2",
687
+ "PeanutJar/LLaMa-2-PeanutButter_v18_A-7B",
688
+ "ToolBench/ToolLLaMA-7b-LoRA",
689
+ "Monero/WizardLM-13b-OpenAssistant-Uncensored",
690
+ "TheTravellingEngineer/llama2-7b-chat-hf-v2",
691
+ "TheTravellingEngineer/llama2-7b-chat-hf-v4",
692
+ "mrm8488/llama-2-coder-7b",
693
+ "elyza/ELYZA-japanese-Llama-2-7b-fast-instruct",
694
+ "clibrain/Llama-2-7b-ft-instruct-es",
695
+ "medalpaca/medalpaca-7b",
696
+ "TheBloke/tulu-7B-fp16",
697
+ "OpenBuddy/openbuddy-openllama-13b-v7-fp16",
698
+ "TaylorAI/FLAN-Llama-7B-2_Llama2-7B-Flash_868_full_model",
699
+ "Aspik101/vicuna-7b-v1.3-instruct-pl-lora_unload",
700
+ "jondurbin/airoboros-l2-7b-gpt4-2.0",
701
+ "dhmeltzer/llama-7b-SFT_ds_eli5_1024_r_64_alpha_16_merged",
702
+ "GOAT-AI/GOAT-7B-Community",
703
+ "AtomEchoAI/AtomGPT_56k",
704
+ "julianweng/Llama-2-7b-chat-orcah",
705
+ "TehVenom/Pygmalion-13b-Merged",
706
+ "jondurbin/airoboros-7b-gpt4-1.1",
707
+ "dhmeltzer/llama-7b-SFT_ds_wiki65k_1024_r_64_alpha_16_merged",
708
+ "bofenghuang/vigogne-7b-chat",
709
+ "lmsys/longchat-7b-v1.5-32k",
710
+ "jondurbin/airoboros-l2-7b-gpt4-m2.0",
711
+ "synapsoft/Llama-2-7b-chat-hf-flan2022-1.2M",
712
+ "jondurbin/airoboros-7b-gpt4-1.4",
713
+ "Charlie911/vicuna-7b-v1.5-lora-mctaco",
714
+ "yihan6324/instructmining-platypus-15k",
715
+ "meta-llama/Llama-2-7b-hf",
716
+ "TheTravellingEngineer/llama2-7b-chat-hf-v3",
717
+ "quantumaikr/KoreanLM-hf",
718
+ "openthaigpt/openthaigpt-1.0.0-alpha-7b-chat-ckpt-hf",
719
+ "TheBloke/Llama-2-7B-GPTQ",
720
+ "TheBloke/Llama-2-7B-GPTQ",
721
+ "LLMs/AlpacaGPT4-7B-elina",
722
+ "ehartford/Wizard-Vicuna-7B-Uncensored",
723
+ "TheBloke/Wizard-Vicuna-7B-Uncensored-HF",
724
+ "TheTravellingEngineer/llama2-7b-chat-hf-v3",
725
+ "golaxy/gowizardlm",
726
+ "ehartford/dolphin-llama2-7b",
727
+ "CHIH-HUNG/llama-2-7b-dolphin_10w-test",
728
+ "mncai/chatdoctor",
729
+ "psyche/kollama2-7b-v3",
730
+ "jondurbin/airoboros-7b-gpt4",
731
+ "jondurbin/airoboros-7b",
732
+ "TheBloke/airoboros-7b-gpt4-fp16",
733
+ "mosaicml/mpt-7b-8k-chat",
734
+ "elyza/ELYZA-japanese-Llama-2-7b",
735
+ "bofenghuang/vigogne-7b-instruct",
736
+ "jxhong/CAlign-alpaca-7b",
737
+ "golaxy/goims",
738
+ "jondurbin/airoboros-7b-gpt4-1.2",
739
+ "jphme/orca_mini_v2_ger_7b",
740
+ "psmathur/orca_mini_v2_7b",
741
+ "notstoic/PygmalionCoT-7b",
742
+ "golaxy/gogpt2-13b",
743
+ "golaxy/gogpt2-13b-chat",
744
+ "togethercomputer/LLaMA-2-7B-32K",
745
+ "TheBloke/wizardLM-7B-HF",
746
+ "keyfan/vicuna-chinese-replication-v1.1",
747
+ "golaxy/gogpt2-7b",
748
+ "aiplanet/effi-7b",
749
+ "arver/llama7b-qlora",
750
+ "titan087/OpenLlama13B-Guanaco",
751
+ "chavinlo/alpaca-native",
752
+ "project-baize/baize-healthcare-lora-7B",
753
+ "AlpinDale/pygmalion-instruct",
754
+ "openlm-research/open_llama_13b",
755
+ "jondurbin/airoboros-7b-gpt4-1.3",
756
+ "elyza/ELYZA-japanese-Llama-2-7b-fast",
757
+ "jondurbin/airoboros-gpt-3.5-turbo-100k-7b",
758
+ "uukuguy/speechless-codellama-orca-13b",
759
+ "bigcode/starcoderplus",
760
+ "TheBloke/guanaco-7B-HF",
761
+ "Neko-Institute-of-Science/metharme-7b",
762
+ "TigerResearch/tigerbot-7b-base",
763
+ "golaxy/gogpt-7b",
764
+ "togethercomputer/LLaMA-2-7B-32K",
765
+ "yhyhy3/open_llama_7b_v2_med_instruct",
766
+ "ajibawa-2023/carl-7b",
767
+ "stabilityai/stablelm-base-alpha-7b-v2",
768
+ "conceptofmind/LLongMA-2-7b-16k",
769
+ "TehVenom/Pygmalion_AlpacaLora-7b",
770
+ "jondurbin/airoboros-7b-gpt4-1.4.1-qlora",
771
+ "wannaphong/openthaigpt-0.1.0-beta-full-model_for_open_llm_leaderboard",
772
+ "ausboss/llama7b-wizardlm-unfiltered",
773
+ "project-baize/baize-v2-7b",
774
+ "LMFlow/Robin-v2",
775
+ "HanningZhang/Robin-v2",
776
+ "LMFlow/Robin-7b-v2",
777
+ "OptimalScale/robin-7b-v2-delta",
778
+ "uukuguy/speechless-codellama-platypus-13b",
779
+ "jerryjalapeno/nart-100k-7b",
780
+ "wenge-research/yayi-13b-llama2",
781
+ "fireballoon/baichuan-vicuna-chinese-7b",
782
+ "jlevin/guanaco-unchained-llama-2-7b",
783
+ "csitfun/llama-7b-logicot",
784
+ "DevaMalla/llama7b_alpaca_1gpu_bf16",
785
+ "WeOpenML/PandaLM-Alpaca-7B-v1",
786
+ "illuin/test-custom-llama",
787
+ "yeontaek/WizardCoder-Python-13B-LoRa",
788
+ "ashercn97/giraffe-7b",
789
+ "mosaicml/mpt-7b-chat",
790
+ "abhishek/autotrain-llama-alpaca-peft-52508123785",
791
+ "Neko-Institute-of-Science/pygmalion-7b",
792
+ "TFLai/llama-7b-4bit-alpaca",
793
+ "huggingface/llama-7b",
794
+ "TheBloke/Planner-7B-fp16",
795
+ "shibing624/chinese-llama-plus-13b-hf",
796
+ "AGI-inc/lora_moe_7b_baseline",
797
+ "DevaMalla/llama-base-7b",
798
+ "AGI-inc/lora_moe_7b",
799
+ "togethercomputer/GPT-JT-6B-v0",
800
+ "ehartford/WizardLM-7B-Uncensored",
801
+ "shibing624/chinese-alpaca-plus-7b-hf",
802
+ "beomi/llama-2-ko-7b",
803
+ "mosaicml/mpt-7b-8k-instruct",
804
+ "Enno-Ai/ennodata-7b",
805
+ "mosaicml/mpt-7b-instruct",
806
+ "facebook/opt-iml-max-30b",
807
+ "WeOpenML/Alpaca-7B-v1",
808
+ "TheBloke/Project-Baize-v2-7B-GPTQ",
809
+ "codellama/CodeLlama-13b-Instruct-hf",
810
+ "TheBloke/CodeLlama-13B-Instruct-fp16",
811
+ "facebook/galactica-30b",
812
+ "FreedomIntelligence/phoenix-inst-chat-7b",
813
+ "openlm-research/open_llama_7b_v2",
814
+ "GeorgiaTechResearchInstitute/galpaca-30b",
815
+ "THUDM/chatglm2-6b",
816
+ "togethercomputer/GPT-JT-6B-v1",
817
+ "TheBloke/koala-7B-HF",
818
+ "nathan0/mpt_delta_tuned_model_v3",
819
+ "nathan0/mpt_delta_tuned_model_v2",
820
+ "GeorgiaTechResearchInstitute/galpaca-30b",
821
+ "JosephusCheung/Guanaco",
822
+ "shareAI/CodeLLaMA-chat-13b-Chinese",
823
+ "TigerResearch/tigerbot-7b-sft",
824
+ "Writer/InstructPalmyra-20b",
825
+ "OpenAssistant/codellama-13b-oasst-sft-v10",
826
+ "bigscience/bloomz-7b1-mt",
827
+ "nathan0/mpt_delta_tuned_model_v3",
828
+ "VMware/open-llama-7b-open-instruct",
829
+ "baichuan-inc/Baichuan-7B",
830
+ "anas-awadalla/mpt-7b",
831
+ "mosaicml/mpt-7b",
832
+ "bigscience/bloomz-7b1",
833
+ "ziqingyang/chinese-llama-2-7b",
834
+ "OpenAssistant/codellama-13b-oasst-sft-v10",
835
+ "wenge-research/yayi-7b",
836
+ "tiiuae/falcon-7b",
837
+ "togethercomputer/RedPajama-INCITE-Instruct-7B-v0.1",
838
+ "togethercomputer/RedPajama-INCITE-7B-Instruct",
839
+ "TheBloke/landmark-attention-llama7b-fp16",
840
+ "togethercomputer/GPT-JT-Moderation-6B",
841
+ "h2oai/h2ogpt-gm-oasst1-en-1024-20b",
842
+ "dvruette/gpt-neox-20b-full-precision",
843
+ "TehVenom/Moderator-Chan_GPT-JT-6b",
844
+ "dvruette/oasst-gpt-neox-20b-1000-steps",
845
+ "AlekseyKorshuk/pygmalion-6b-vicuna-chatml",
846
+ "facebook/opt-66b",
847
+ "Salesforce/codegen-16B-nl",
848
+ "Vmware/open-llama-7b-v2-open-instruct",
849
+ "mosaicml/mpt-7b-storywriter",
850
+ "acrastt/Marx-3B-V2",
851
+ "openlm-research/open_llama_7b",
852
+ "Fredithefish/ReasonixPajama-3B-HF",
853
+ "togethercomputer/GPT-NeoXT-Chat-Base-20B",
854
+ "psmathur/orca_mini_13b",
855
+ "RWKV/rwkv-raven-14b",
856
+ "h2oai/h2ogpt-oasst1-512-20b",
857
+ "acrastt/Marx-3B",
858
+ "klosax/open_llama_13b_600bt_preview",
859
+ "synapsoft/Llama-2-7b-hf-flan2022-1.2M",
860
+ "OpenAssistant/oasst-sft-1-pythia-12b",
861
+ "golaxy/gogpt-7b-bloom",
862
+ "Writer/palmyra-large",
863
+ "psmathur/orca_mini_7b",
864
+ "dvruette/oasst-pythia-12b-6000-steps",
865
+ "NousResearch/CodeLlama-13b-hf",
866
+ "codellama/CodeLlama-13b-hf",
867
+ "h2oai/h2ogpt-gm-oasst1-multilang-1024-20b",
868
+ "VMware/open-llama-0.7T-7B-open-instruct-v1.1",
869
+ "dvruette/oasst-pythia-12b-flash-attn-5000-steps",
870
+ "dvruette/oasst-gpt-neox-20b-3000-steps",
871
+ "RobbeD/OpenLlama-Platypus-3B",
872
+ "facebook/opt-30b",
873
+ "acrastt/Puma-3B",
874
+ "OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5",
875
+ "dvruette/oasst-pythia-12b-pretrained-sft",
876
+ "digitous/GPT-R",
877
+ "acrastt/Griffin-3B",
878
+ "togethercomputer/RedPajama-INCITE-Base-7B-v0.1",
879
+ "togethercomputer/RedPajama-INCITE-7B-Base",
880
+ "CobraMamba/mamba-gpt-3b-v3",
881
+ "Danielbrdz/CodeBarcenas-7b",
882
+ "l3utterfly/open-llama-3b-v2-layla",
883
+ "CobraMamba/mamba-gpt-3b-v2",
884
+ "OpenAssistant/pythia-12b-sft-v8-7k-steps",
885
+ "KoboldAI/GPT-NeoX-20B-Erebus",
886
+ "RobbeD/Orca-Platypus-3B",
887
+ "h2oai/h2ogpt-gm-oasst1-en-1024-12b",
888
+ "OpenAssistant/pythia-12b-sft-v8-2.5k-steps",
889
+ "AlekseyKorshuk/chatml-pyg-v1",
890
+ "togethercomputer/RedPajama-INCITE-Chat-7B-v0.1",
891
+ "togethercomputer/RedPajama-INCITE-7B-Chat",
892
+ "digitous/Javelin-R",
893
+ "dvruette/oasst-pythia-12b-reference",
894
+ "EleutherAI/gpt-neox-20b",
895
+ "KoboldAI/fairseq-dense-13B",
896
+ "OpenAssistant/pythia-12b-sft-v8-rlhf-2k-steps",
897
+ "codellama/CodeLlama-7b-Instruct-hf",
898
+ "digitous/Javelin-GPTJ",
899
+ "KoboldAI/GPT-NeoX-20B-Skein",
900
+ "digitous/Javalion-R",
901
+ "h2oai/h2ogpt-oasst1-512-12b",
902
+ "acrastt/Bean-3B",
903
+ "KoboldAI/GPT-J-6B-Skein",
904
+ "nomic-ai/gpt4all-j",
905
+ "databricks/dolly-v2-12b",
906
+ "TehVenom/Dolly_Shygmalion-6b-Dev_V8P2",
907
+ "databricks/dolly-v2-7b",
908
+ "Aspik101/WizardVicuna-Uncensored-3B-instruct-PL-lora_unload",
909
+ "digitous/Adventien-GPTJ",
910
+ "openlm-research/open_llama_3b_v2",
911
+ "RWKV/rwkv-4-14b-pile",
912
+ "Lazycuber/Janemalion-6B",
913
+ "OpenAssistant/pythia-12b-pre-v8-12.5k-steps",
914
+ "digitous/Janin-R",
915
+ "kfkas/Llama-2-ko-7b-Chat",
916
+ "heegyu/WizardVicuna-Uncensored-3B-0719",
917
+ "h2oai/h2ogpt-gm-oasst1-en-1024-open-llama-7b-preview-400bt",
918
+ "TaylorAI/Flash-Llama-3B",
919
+ "kfkas/Llama-2-ko-7b-Chat",
920
+ "digitous/Skegma-GPTJ",
921
+ "digitous/Javalion-GPTJ",
922
+ "Pirr/pythia-13b-deduped-green_devil",
923
+ "TehVenom/PPO_Shygmalion-V8p4_Dev-6b",
924
+ "dvruette/oasst-pythia-6.9b-4000-steps",
925
+ "heegyu/WizardVicuna-3B-0719",
926
+ "psmathur/orca_mini_3b",
927
+ "OpenAssistant/galactica-6.7b-finetuned",
928
+ "frank098/orca_mini_3b_juniper",
929
+ "PygmalionAI/pygmalion-6b",
930
+ "TehVenom/PPO_Pygway-V8p4_Dev-6b",
931
+ "TFLai/gpt-neox-20b-4bit-alpaca",
932
+ "Corianas/gpt-j-6B-Dolly",
933
+ "TehVenom/Dolly_Shygmalion-6b",
934
+ "digitous/Janin-GPTJ",
935
+ "TehVenom/GPT-J-Pyg_PPO-6B-Dev-V8p4",
936
+ "EleutherAI/gpt-j-6b",
937
+ "KoboldAI/GPT-J-6B-Shinen",
938
+ "TehVenom/Dolly_Malion-6b",
939
+ "TehVenom/ChanMalion",
940
+ "Salesforce/codegen-6B-nl",
941
+ "Fredithefish/RedPajama-INCITE-Chat-3B-Instruction-Tuning-with-GPT-4",
942
+ "KoboldAI/GPT-J-6B-Janeway",
943
+ "togethercomputer/RedPajama-INCITE-Chat-3B-v1",
944
+ "togethercomputer/Pythia-Chat-Base-7B",
945
+ "heegyu/RedTulu-Uncensored-3B-0719",
946
+ "KoboldAI/PPO_Pygway-6b-Mix",
947
+ "KoboldAI/OPT-13B-Erebus",
948
+ "KoboldAI/fairseq-dense-6.7B",
949
+ "EleutherAI/pythia-12b-deduped",
950
+ "pszemraj/pythia-6.9b-HC3",
951
+ "Fredithefish/Guanaco-3B-Uncensored-v2",
952
+ "facebook/opt-13b",
953
+ "TehVenom/GPT-J-Pyg_PPO-6B",
954
+ "EleutherAI/pythia-6.9b-deduped",
955
+ "Devio/test-1400",
956
+ "Fredithefish/Guanaco-3B-Uncensored",
957
+ "codellama/CodeLlama-7b-hf",
958
+ "acrastt/RedPajama-INCITE-Chat-Instruct-3B-V1",
959
+ "Fredithefish/ScarletPajama-3B-HF",
960
+ "KoboldAI/OPT-13B-Nerybus-Mix",
961
+ "YeungNLP/firefly-bloom-7b1",
962
+ "DanielSc4/RedPajama-INCITE-Chat-3B-v1-RL-LoRA-8bit-test1",
963
+ "klosax/open_llama_7b_400bt_preview",
964
+ "KoboldAI/OPT-13B-Nerys-v2",
965
+ "TehVenom/PPO_Shygmalion-6b",
966
+ "amazon/LightGPT",
967
+ "KnutJaegersberg/black_goo_recipe_c",
968
+ "NousResearch/CodeLlama-7b-hf",
969
+ "togethercomputer/RedPajama-INCITE-Instruct-3B-v1",
970
+ "heegyu/WizardVicuna-open-llama-3b-v2",
971
+ "bigscience/bloom-7b1",
972
+ "Devio/test-22B",
973
+ "RWKV/rwkv-raven-7b",
974
+ "hakurei/instruct-12b",
975
+ "CobraMamba/mamba-gpt-3b",
976
+ "KnutJaegersberg/black_goo_recipe_a",
977
+ "acrastt/OmegLLaMA-3B",
978
+ "codellama/CodeLlama-7b-Instruct-hf",
979
+ "h2oai/h2ogpt-oig-oasst1-512-6_9b",
980
+ "KoboldAI/OPT-6.7B-Erebus",
981
+ "facebook/opt-6.7b",
982
+ "KnutJaegersberg/black_goo_recipe_d",
983
+ "KnutJaegersberg/LLongMA-3b-LIMA",
984
+ "KnutJaegersberg/black_goo_recipe_b",
985
+ "KoboldAI/OPT-6.7B-Nerybus-Mix",
986
+ "health360/Healix-3B",
987
+ "EleutherAI/pythia-12b",
988
+ "Fredithefish/RedPajama-INCITE-Chat-3B-ShareGPT-11K",
989
+ "GeorgiaTechResearchInstitute/galactica-6.7b-evol-instruct-70k",
990
+ "h2oai/h2ogpt-oig-oasst1-256-6_9b",
991
+ "ikala/bloom-zh-3b-chat",
992
+ "Taekyoon/llama2-ko-7b-test",
993
+ "anhnv125/pygmalion-6b-roleplay",
994
+ "TehVenom/DiffMerge_Pygmalion_Main-onto-V8P4",
995
+ "KoboldAI/OPT-6B-nerys-v2",
996
+ "Lazycuber/pyg-instruct-wizardlm",
997
+ "Devio/testC",
998
+ "KoboldAI/OPT-30B-Erebus",
999
+ "Fredithefish/CrimsonPajama",
1000
+ "togethercomputer/RedPajama-INCITE-Base-3B-v1",
1001
+ "bigscience/bloomz-3b",
1002
+ "conceptofmind/Open-LLongMA-3b",
1003
+ "RWKV/rwkv-4-7b-pile",
1004
+ "openlm-research/open_llama_3b",
1005
+ "ewof/koishi-instruct-3b",
1006
+ "DanielSc4/RedPajama-INCITE-Chat-3B-v1-FT-LoRA-8bit-test1",
1007
+ "cerebras/Cerebras-GPT-13B",
1008
+ "EleutherAI/pythia-6.7b",
1009
+ "aisquared/chopt-2_7b",
1010
+ "Azure99/blossom-v1-3b",
1011
+ "PSanni/Deer-3b",
1012
+ "bertin-project/bertin-gpt-j-6B-alpaca",
1013
+ "OpenBuddy/openbuddy-openllama-3b-v10-bf16",
1014
+ "KoboldAI/fairseq-dense-2.7B",
1015
+ "ehartford/CodeLlama-34b-Instruct-hf",
1016
+ "codellama/CodeLlama-34b-Instruct-hf",
1017
+ "TheBloke/CodeLlama-34B-Instruct-fp16",
1018
+ "h2oai/h2ogpt-gm-oasst1-en-2048-open-llama-7b-preview-300bt-v2",
1019
+ "openlm-research/open_llama_7b_700bt_preview",
1020
+ "NbAiLab/nb-gpt-j-6B-alpaca",
1021
+ "KoboldAI/OPT-2.7B-Erebus",
1022
+ "Writer/camel-5b-hf",
1023
+ "EleutherAI/pythia-2.7b",
1024
+ "facebook/xglm-7.5B",
1025
+ "EleutherAI/pythia-2.8b-deduped",
1026
+ "klosax/open_llama_3b_350bt_preview",
1027
+ "klosax/openllama-3b-350bt",
1028
+ "KoboldAI/OPT-2.7B-Nerybus-Mix",
1029
+ "KoboldAI/GPT-J-6B-Adventure",
1030
+ "cerebras/Cerebras-GPT-6.7B",
1031
+ "TFLai/pythia-2.8b-4bit-alpaca",
1032
+ "facebook/opt-2.7b",
1033
+ "KoboldAI/OPT-2.7B-Nerys-v2",
1034
+ "bigscience/bloom-3b",
1035
+ "Devio/test100",
1036
+ "RWKV/rwkv-raven-3b",
1037
+ "Azure99/blossom-v2-3b",
1038
+ "codellama/CodeLlama-34b-Python-hf",
1039
+ "bhenrym14/airoboros-33b-gpt4-1.4.1-PI-8192-fp16",
1040
+ "EleutherAI/gpt-neo-2.7B",
1041
+ "danielhanchen/open_llama_3b_600bt_preview",
1042
+ "HuggingFaceH4/starchat-alpha",
1043
+ "pythainlp/wangchanglm-7.5B-sft-en-sharded",
1044
+ "beaugogh/pythia-1.4b-deduped-sharegpt",
1045
+ "HWERI/pythia-1.4b-deduped-sharegpt",
1046
+ "OpenAssistant/stablelm-7b-sft-v7-epoch-3",
1047
+ "codellama/CodeLlama-7b-Python-hf",
1048
+ "aisquared/chopt-1_3b",
1049
+ "PygmalionAI/metharme-1.3b",
1050
+ "Linly-AI/Chinese-LLaMA-2-13B-hf",
1051
+ "chargoddard/llama-2-34b-uncode",
1052
+ "RWKV/rwkv-4-3b-pile",
1053
+ "pythainlp/wangchanglm-7.5B-sft-enth",
1054
+ "MBZUAI/LaMini-GPT-1.5B",
1055
+ "Writer/palmyra-base",
1056
+ "KoboldAI/fairseq-dense-1.3B",
1057
+ "EleutherAI/pythia-1.4b-deduped",
1058
+ "MBZUAI/lamini-neo-1.3b",
1059
+ "h2oai/h2ogpt-gm-oasst1-en-2048-open-llama-7b-preview-300bt",
1060
+ "sartmis1/starcoder-finetune-openapi",
1061
+ "MayaPH/opt-flan-iml-6.7b",
1062
+ "facebook/xglm-4.5B",
1063
+ "WizardLM/WizardCoder-15B-V1.0",
1064
+ "facebook/opt-iml-max-1.3b",
1065
+ "stabilityai/stablelm-tuned-alpha-7b",
1066
+ "aisquared/dlite-v2-1_5b",
1067
+ "stabilityai/stablelm-base-alpha-7b",
1068
+ "sartmis1/starcoder-finetune-selfinstruct",
1069
+ "lizhuang144/starcoder_mirror",
1070
+ "bigcode/starcoder",
1071
+ "TheBloke/CodeLlama-34B-Python-fp16",
1072
+ "open-llm-leaderboard/bloomz-1b7-4bit-alpaca-auto-eval-adapter-applied",
1073
+ "ehartford/CodeLlama-34b-Python-hf",
1074
+ "codellama/CodeLlama-7b-Python-hf",
1075
+ "GeorgiaTechResearchInstitute/starcoder-gpteacher-code-instruct",
1076
+ "LoupGarou/WizardCoder-Guanaco-15B-V1.0",
1077
+ "golaxy/gogpt-3b-bloom",
1078
+ "EleutherAI/pythia-1.3b",
1079
+ "codellama/CodeLlama-13b-Python-hf",
1080
+ "hakurei/lotus-12B",
1081
+ "NYTK/PULI-GPTrio",
1082
+ "facebook/opt-1.3b",
1083
+ "TheBloke/CodeLlama-13B-Python-fp16",
1084
+ "codellama/CodeLlama-13b-Python-hf",
1085
+ "RWKV/rwkv-raven-1b5",
1086
+ "PygmalionAI/pygmalion-2.7b",
1087
+ "bigscience/bloom-1b7",
1088
+ "gpt2-xl",
1089
+ "LoupGarou/WizardCoder-Guanaco-15B-V1.1",
1090
+ "RWKV/rwkv-4-1b5-pile",
1091
+ "codellama/CodeLlama-34b-hf",
1092
+ "NousResearch/CodeLlama-34b-hf",
1093
+ "rinna/bilingual-gpt-neox-4b-8k",
1094
+ "lxe/Cerebras-GPT-2.7B-Alpaca-SP",
1095
+ "cerebras/Cerebras-GPT-2.7B",
1096
+ "jzjiao/opt-1.3b-rlhf",
1097
+ "EleutherAI/gpt-neo-1.3B",
1098
+ "aisquared/dlite-v1-1_5b",
1099
+ "Corianas/Quokka_2.7b",
1100
+ "MrNJK/gpt2-xl-sft",
1101
+ "facebook/galactica-1.3b",
1102
+ "aisquared/dlite-v2-774m",
1103
+ "EleutherAI/pythia-1b-deduped",
1104
+ "Kunhao/pile-7b-250b-tokens",
1105
+ "w601sxs/b1ade-1b",
1106
+ "rinna/bilingual-gpt-neox-4b",
1107
+ "shaohang/SparseOPT-1.3B",
1108
+ "shaohang/Sparse0.5_OPT-1.3",
1109
+ "EleutherAI/polyglot-ko-12.8b",
1110
+ "Salesforce/codegen-6B-multi",
1111
+ "bigscience/bloom-1b1",
1112
+ "TFLai/gpt-neo-1.3B-4bit-alpaca",
1113
+ "FabbriSimo01/Bloom_1b_Quantized",
1114
+ "MBZUAI/LaMini-GPT-774M",
1115
+ "Locutusque/gpt2-large-conversational",
1116
+ "Devio/test-3b",
1117
+ "stabilityai/stablelm-tuned-alpha-3b",
1118
+ "PygmalionAI/pygmalion-1.3b",
1119
+ "KoboldAI/fairseq-dense-355M",
1120
+ "Rachneet/gpt2-xl-alpaca",
1121
+ "gpt2-large",
1122
+ "Mikivis/gpt2-large-lora-sft",
1123
+ "stabilityai/stablelm-base-alpha-3b",
1124
+ "gpt2-medium",
1125
+ "Kunhao/pile-7b",
1126
+ "aisquared/dlite-v1-774m",
1127
+ "aisquared/dlite-v2-355m",
1128
+ "YeungNLP/firefly-bloom-2b6-v2",
1129
+ "KnutJaegersberg/gpt-2-xl-EvolInstruct",
1130
+ "KnutJaegersberg/galactica-orca-wizardlm-1.3b",
1131
+ "cerebras/Cerebras-GPT-1.3B",
1132
+ "FabbriSimo01/Cerebras_1.3b_Quantized",
1133
+ "facebook/xglm-1.7B",
1134
+ "EleutherAI/pythia-410m-deduped",
1135
+ "TheBloke/GPlatty-30B-SuperHOT-8K-fp16",
1136
+ "DataLinguistic/DataLinguistic-34B-V1.0",
1137
+ "Corianas/Quokka_1.3b",
1138
+ "TheTravellingEngineer/bloom-560m-RLHF-v2",
1139
+ "Corianas/1.3b",
1140
+ "RWKV/rwkv-4-430m-pile",
1141
+ "porkorbeef/Llama-2-13b-sf",
1142
+ "xhyi/PT_GPTNEO350_ATG",
1143
+ "TheBloke/Wizard-Vicuna-13B-Uncensored-GPTQ",
1144
+ "bigscience/bloomz-560m",
1145
+ "TheBloke/medalpaca-13B-GPTQ-4bit",
1146
+ "TheBloke/Vicuna-33B-1-3-SuperHOT-8K-fp16",
1147
+ "aisquared/dlite-v1-355m",
1148
+ "uukuguy/speechless-codellama-orca-airoboros-13b-0.10e",
1149
+ "yhyhy3/med-orca-instruct-33b",
1150
+ "TheBloke/Wizard-Vicuna-30B-Superhot-8K-fp16",
1151
+ "TheTravellingEngineer/bloom-1b1-RLHF",
1152
+ "MBZUAI/lamini-cerebras-1.3b",
1153
+ "IDEA-CCNL/Ziya-LLaMA-13B-Pretrain-v1",
1154
+ "TheBloke/WizardLM-7B-uncensored-GPTQ",
1155
+ "TheBloke/EverythingLM-13B-16K-GPTQ",
1156
+ "quantumaikr/open_llama_7b_hf",
1157
+ "TheBloke/chronos-wizardlm-uc-scot-st-13B-GPTQ",
1158
+ "TheBloke/WizardLM-30B-Uncensored-GPTQ",
1159
+ "IDEA-CCNL/Ziya-LLaMA-13B-v1",
1160
+ "Phind/Phind-CodeLlama-34B-v1",
1161
+ "robowaifudev/megatron-gpt2-345m",
1162
+ "MayaPH/GodziLLa-30B-instruct",
1163
+ "TheBloke/CAMEL-33B-Combined-Data-SuperHOT-8K-fp16",
1164
+ "uukuguy/speechless-codellama-orca-platypus-13b-0.10e",
1165
+ "doas/test2",
1166
+ "BreadAi/PM_modelV2",
1167
+ "bigcode/santacoder",
1168
+ "TheBloke/wizard-vicuna-13B-GPTQ",
1169
+ "porkorbeef/Llama-2-13b",
1170
+ "TehVenom/DiffMerge-DollyGPT-Pygmalion",
1171
+ "PygmalionAI/pygmalion-350m",
1172
+ "TheBloke/orca_mini_v3_7B-GPTQ",
1173
+ "TheBloke/WizardLM-Uncensored-SuperCOT-StoryTelling-30B-GPTQ",
1174
+ "TheBloke/WizardLM-30B-GPTQ",
1175
+ "bigscience/bloom-560m",
1176
+ "TFLai/gpt2-turkish-uncased",
1177
+ "TheBloke/guanaco-33B-GPTQ",
1178
+ "TheBloke/openchat_v2_openorca_preview-GPTQ",
1179
+ "porkorbeef/Llama-2-13b-public",
1180
+ "TheBloke/LongChat-13B-GPTQ",
1181
+ "yhyhy3/med-orca-instruct-33b",
1182
+ "TheBloke/airoboros-33B-gpt4-1-4-SuperHOT-8K-fp16",
1183
+ "TheBloke/Chinese-Alpaca-33B-SuperHOT-8K-fp16",
1184
+ "MayaPH/FinOPT-Franklin",
1185
+ "TheBloke/WizardLM-33B-V1.0-Uncensored-GPTQ",
1186
+ "TheBloke/Project-Baize-v2-13B-GPTQ",
1187
+ "malhajar/Platypus2-70B-instruct-4bit-gptq",
1188
+ "KoboldAI/OPT-350M-Erebus",
1189
+ "rishiraj/bloom-560m-guanaco",
1190
+ "Panchovix/WizardLM-33B-V1.0-Uncensored-SuperHOT-8k",
1191
+ "doas/test5",
1192
+ "vicgalle/alpaca-7b",
1193
+ "beomi/KoAlpaca-Polyglot-5.8B",
1194
+ "Phind/Phind-CodeLlama-34B-Python-v1",
1195
+ "timdettmers/guanaco-65b-merged",
1196
+ "TheBloke/wizard-mega-13B-GPTQ",
1197
+ "MayaPH/GodziLLa-30B-plus",
1198
+ "TheBloke/Platypus-30B-SuperHOT-8K-fp16",
1199
+ "facebook/opt-350m",
1200
+ "KoboldAI/OPT-350M-Nerys-v2",
1201
+ "TheBloke/robin-33B-v2-GPTQ",
1202
+ "jaspercatapang/Echidna-30B",
1203
+ "TheBloke/llama-30b-supercot-SuperHOT-8K-fp16",
1204
+ "marcchew/test1",
1205
+ "Harshvir/LaMini-Neo-1.3B-Mental-Health_lora",
1206
+ "golaxy/gogpt-560m",
1207
+ "TheBloke/orca_mini_13B-GPTQ",
1208
+ "Panchovix/airoboros-33b-gpt4-1.2-SuperHOT-8k",
1209
+ "Aspik101/tulu-7b-instruct-pl-lora_unload",
1210
+ "Phind/Phind-CodeLlama-34B-v2",
1211
+ "BreadAi/MusePy-1-2",
1212
+ "cerebras/Cerebras-GPT-590M",
1213
+ "microsoft/CodeGPT-small-py",
1214
+ "victor123/WizardLM-13B-1.0",
1215
+ "OptimalScale/robin-65b-v2-delta",
1216
+ "voidful/changpt-bart",
1217
+ "FabbriSimo01/GPT_Large_Quantized",
1218
+ "MayaPH/FinOPT-Lincoln",
1219
+ "KoboldAI/fairseq-dense-125M",
1220
+ "SebastianSchramm/Cerebras-GPT-111M-instruction",
1221
+ "TheTravellingEngineer/bloom-560m-RLHF",
1222
+ "breadlicker45/dough-instruct-base-001",
1223
+ "WizardLM/WizardLM-30B-V1.0",
1224
+ "WizardLM/WizardLM-30B-V1.0",
1225
+ "WizardLM/WizardLM-30B-V1.0",
1226
+ "TaylorAI/Flash-Llama-30M-20001",
1227
+ "porkorbeef/Llama-2-13b-12_153950",
1228
+ "huggingtweets/bladeecity-jerma985",
1229
+ "KnutJaegersberg/megatron-GPT-2-345m-EvolInstruct",
1230
+ "bhenrym14/airoboros-33b-gpt4-1.4.1-lxctx-PI-16384-fp16",
1231
+ "microsoft/DialoGPT-small",
1232
+ "Corianas/590m",
1233
+ "facebook/xglm-564M",
1234
+ "EleutherAI/gpt-neo-125m",
1235
+ "EleutherAI/pythia-160m-deduped",
1236
+ "klosax/pythia-160m-deduped-step92k-193bt",
1237
+ "MBZUAI/lamini-neo-125m",
1238
+ "bigcode/tiny_starcoder_py",
1239
+ "concedo/OPT-19M-ChatSalad",
1240
+ "anton-l/gpt-j-tiny-random",
1241
+ "grantprice/Cerebras-GPT-590M-finetuned-DND",
1242
+ "deepnight-research/zsc-text",
1243
+ "WangZeJun/bloom-820m-chat",
1244
+ "cerebras/Cerebras-GPT-256M",
1245
+ "ai-forever/rugpt3large_based_on_gpt2",
1246
+ "alibidaran/medical_transcription_generator",
1247
+ "Deci/DeciCoder-1b",
1248
+ "microsoft/DialoGPT-medium",
1249
+ "ogimgio/gpt-neo-125m-neurallinguisticpioneers",
1250
+ "open-llm-leaderboard/bloom-560m-4bit-alpaca-auto-eval-adapter-applied",
1251
+ "BreadAi/gpt-YA-1-1_160M",
1252
+ "microsoft/DialoGPT-large",
1253
+ "facebook/opt-125m",
1254
+ "huggingtweets/jerma985",
1255
+ "Locutusque/gpt2-conversational-or-qa",
1256
+ "concedo/Pythia-70M-ChatSalad",
1257
+ "roneneldan/TinyStories-1M",
1258
+ "BreadAi/DiscordPy",
1259
+ "bigcode/gpt_bigcode-santacoder",
1260
+ "Tincando/fiction_story_generator",
1261
+ "klosax/pythia-70m-deduped-step44k-92bt",
1262
+ "Quake24/easyTermsSummerizer",
1263
+ "BreadAi/gpt-YA-1-1_70M",
1264
+ "EleutherAI/pythia-160m",
1265
+ "euclaise/gpt-neox-122m-minipile-digits",
1266
+ "MBZUAI/lamini-cerebras-590m",
1267
+ "nicholasKluge/Aira-124M",
1268
+ "MayaPH/FinOPT-Washington",
1269
+ "cyberagent/open-calm-large",
1270
+ "BreadAi/StoryPy",
1271
+ "EleutherAI/pythia-70m",
1272
+ "BreadAi/gpt-Youtube",
1273
+ "roneneldan/TinyStories-33M",
1274
+ "EleutherAI/pythia-70m-deduped",
1275
+ "lgaalves/gpt2_guanaco-dolly-platypus",
1276
+ "Corianas/Quokka_590m",
1277
+ "lgaalves/gpt2_platypus-dolly-guanaco",
1278
+ "cyberagent/open-calm-7b",
1279
+ "RWKV/rwkv-4-169m-pile",
1280
+ "gpt2",
1281
+ "roneneldan/TinyStories-28M",
1282
+ "lgaalves/gpt2_open-platypus",
1283
+ "gpt2",
1284
+ "SaylorTwift/gpt2_test",
1285
+ "roneneldan/TinyStories-3M",
1286
+ "nthngdy/pythia-owt2-70m-50k",
1287
+ "Corianas/256_5epoch",
1288
+ "roneneldan/TinyStories-8M",
1289
+ "lgaalves/gpt2-dolly",
1290
+ "nthngdy/pythia-owt2-70m-100k",
1291
+ "aisquared/dlite-v2-124m",
1292
+ "mncai/SGPT-1.3B-insurance-epoch10",
1293
+ "huggingtweets/gladosystem",
1294
+ "abhiramtirumala/DialoGPT-sarcastic-medium",
1295
+ "MBZUAI/lamini-cerebras-256m",
1296
+ "cerebras/Cerebras-GPT-111M",
1297
+ "uberkie/metharme-1.3b-finetuned",
1298
+ "MBZUAI/lamini-cerebras-111m",
1299
+ "psyche/kogpt",
1300
+ "Corianas/Quokka_256m",
1301
+ "vicgalle/gpt2-alpaca-gpt4",
1302
+ "aisquared/dlite-v1-124m",
1303
+ "Mikivis/xuanxuan",
1304
+ "MBZUAI/LaMini-GPT-124M",
1305
+ "vicgalle/gpt2-alpaca",
1306
+ "huashiyiqike/testmodel",
1307
+ "Corianas/111m",
1308
+ "baseline",
1309
+ ]
src/tools/plots.py ADDED
@@ -0,0 +1,156 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ import numpy as np
3
+ import plotly.express as px
4
+ from plotly.graph_objs import Figure
5
+
6
+ from src.leaderboard.filter_models import FLAGGED_MODELS
7
+ from src.display.utils import human_baseline_row as HUMAN_BASELINE, AutoEvalColumn, BENCHMARK_COLS
8
+ from src.about import Tasks, Task
9
+ from src.leaderboard.read_evals import EvalResult
10
+
11
+
12
+
13
+ def create_scores_df(raw_data: list[EvalResult]) -> pd.DataFrame:
14
+ """
15
+ Generates a DataFrame containing the maximum scores until each date.
16
+
17
+ :param results_df: A DataFrame containing result information including metric scores and dates.
18
+ :return: A new DataFrame containing the maximum scores until each date for every metric.
19
+ """
20
+ # Step 1: Ensure 'date' is in datetime format and sort the DataFrame by it
21
+ results_df = pd.DataFrame(raw_data)
22
+ results_df["date"] = pd.to_datetime(results_df["date"], format="mixed", utc=True)
23
+ results_df.sort_values(by="date", inplace=True)
24
+
25
+ # Step 2: Initialize the scores dictionary
26
+ scores = {k: [] for k in BENCHMARK_COLS + [AutoEvalColumn.average.name]}
27
+
28
+ # Step 3: Iterate over the rows of the DataFrame and update the scores dictionary
29
+ for task in [t.value for t in Tasks] + [Task("Average", "avg", AutoEvalColumn.average.name)]:
30
+ current_max = 0
31
+ last_date = ""
32
+ column = task.col_name
33
+ for _, row in results_df.iterrows():
34
+ current_model = row["full_model"]
35
+ if current_model in FLAGGED_MODELS:
36
+ continue
37
+
38
+ current_date = row["date"]
39
+ if task.benchmark == "Average":
40
+ current_score = np.mean(list(row["results"].values()))
41
+ else:
42
+ if row["results"] and task.benchmark in row["results"]:
43
+ current_score = row["results"][task.benchmark]
44
+ else:
45
+ current_score = 0
46
+
47
+ if current_score > current_max:
48
+ if current_date == last_date and len(scores[column]) > 0:
49
+ scores[column][-1] = {"model": current_model, "date": current_date, "score": current_score}
50
+ else:
51
+ scores[column].append({"model": current_model, "date": current_date, "score": current_score})
52
+ current_max = current_score
53
+ last_date = current_date
54
+
55
+ # Step 4: Return all dictionaries as DataFrames
56
+ return {k: pd.DataFrame(v) for k, v in scores.items()}
57
+
58
+
59
+ def create_plot_df(scores_df: dict[str: pd.DataFrame]) -> pd.DataFrame:
60
+ """
61
+ Transforms the scores DataFrame into a new format suitable for plotting.
62
+
63
+ :param scores_df: A DataFrame containing metric scores and dates.
64
+ :return: A new DataFrame reshaped for plotting purposes.
65
+ """
66
+ # Initialize the list to store DataFrames
67
+ dfs = []
68
+ # Iterate over the cols and create a new DataFrame for each column
69
+ for col in BENCHMARK_COLS + [AutoEvalColumn.average.name]:
70
+ d = scores_df[col].reset_index(drop=True)
71
+ d["task"] = col
72
+ dfs.append(d)
73
+
74
+ # Concatenate all the created DataFrames
75
+ concat_df = pd.concat(dfs, ignore_index=True)
76
+
77
+ # Sort values by 'date'
78
+ concat_df.sort_values(by="date", inplace=True)
79
+ concat_df.reset_index(drop=True, inplace=True)
80
+ return concat_df
81
+
82
+
83
+ def create_metric_plot_obj(
84
+ df: pd.DataFrame, metrics: list[str], title: str
85
+ ) -> Figure:
86
+ """
87
+ Create a Plotly figure object with lines representing different metrics
88
+ and horizontal dotted lines representing human baselines.
89
+
90
+ :param df: The DataFrame containing the metric values, names, and dates.
91
+ :param metrics: A list of strings representing the names of the metrics
92
+ to be included in the plot.
93
+ :param title: A string representing the title of the plot.
94
+ :return: A Plotly figure object with lines representing metrics and
95
+ horizontal dotted lines representing human baselines.
96
+ """
97
+
98
+ # Filter the DataFrame based on the specified metrics
99
+ df = df[df["task"].isin(metrics)]
100
+ # Filter the human baselines based on the specified metrics
101
+ filtered_human_baselines = {k: v for k, v in HUMAN_BASELINE.items() if k in metrics}
102
+
103
+ # Create a line figure using plotly express with specified markers and custom data
104
+ fig = px.line(
105
+ df,
106
+ x="date",
107
+ y="score",
108
+ color="task",
109
+ markers=True,
110
+ custom_data=["task", "score", "model"],
111
+ title=title,
112
+ )
113
+
114
+ # Update hovertemplate for better hover interaction experience
115
+ fig.update_traces(
116
+ hovertemplate="<br>".join(
117
+ [
118
+ "Model Name: %{customdata[2]}",
119
+ "Metric Name: %{customdata[0]}",
120
+ "Date: %{x}",
121
+ "Metric Value: %{y}",
122
+ ]
123
+ )
124
+ )
125
+
126
+ # Update the range of the y-axis
127
+ fig.update_layout(yaxis_range=[0, 100])
128
+
129
+ # Create a dictionary to hold the color mapping for each metric
130
+ metric_color_mapping = {}
131
+
132
+ # Map each metric name to its color in the figure
133
+ for trace in fig.data:
134
+ metric_color_mapping[trace.name] = trace.line.color
135
+
136
+ # Iterate over filtered human baselines and add horizontal lines to the figure
137
+ #for metric, value in filtered_human_baselines.items():
138
+ # color = metric_color_mapping.get(metric, "blue") # Retrieve color from mapping; default to blue if not found
139
+ # location = "top left" if metric == "HellaSwag" else "bottom left" # Set annotation position
140
+ # # Add horizontal line with matched color and positioned annotation
141
+ # fig.add_hline(
142
+ # y=value,
143
+ # line_dash="dot",
144
+ # annotation_text=f"{metric} human baseline",
145
+ # annotation_position=location,
146
+ # annotation_font_size=10,
147
+ # annotation_font_color=color,
148
+ # line_color=color,
149
+ # )
150
+
151
+ return fig
152
+
153
+
154
+ # Example Usage:
155
+ # human_baselines dictionary is defined.
156
+ # chart = create_metric_plot_obj(scores_df, ["ARC", "HellaSwag", "MMLU", "TruthfulQA"], human_baselines, "Graph Title")