Spaces:
Running
Running
lixuejing
commited on
Commit
·
3003ba0
1
Parent(s):
8ccc232
update
Browse files- app.py +337 -0
- src/__pycache__/envs.cpython-313.pyc +0 -0
- src/about.py +222 -0
- src/display/__pycache__/formatting.cpython-313.pyc +0 -0
- src/display/css_html_js.py +105 -0
- src/display/formatting.py +27 -0
- src/display/utils.py +186 -0
- src/envs.py +40 -0
- src/leaderboard/filter_models.py +138 -0
- src/leaderboard/read_evals.py +237 -0
- src/populate.py +58 -0
- src/scripts/check_request.py +404 -0
- src/scripts/create_request_file.py +93 -0
- src/scripts/update_all_request_files.py +94 -0
- src/submission/__pycache__/check_validity.cpython-313.pyc +0 -0
- src/submission/__pycache__/submit.cpython-313.pyc +0 -0
- src/submission/check_validity.py +152 -0
- src/submission/submit.py +199 -0
- src/tools/collections.py +85 -0
- src/tools/datastatics.py +39 -0
- src/tools/model_backlinks.py +1309 -0
- src/tools/plots.py +156 -0
app.py
ADDED
@@ -0,0 +1,337 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
|
3 |
+
import pandas as pd
|
4 |
+
from apscheduler.schedulers.background import BackgroundScheduler
|
5 |
+
from huggingface_hub import snapshot_download
|
6 |
+
|
7 |
+
from src.about import (
|
8 |
+
CITATION_BUTTON_LABEL,
|
9 |
+
CITATION_BUTTON_TEXT,
|
10 |
+
EVALUATION_QUEUE_TEXT,
|
11 |
+
INTRODUCTION_TEXT,
|
12 |
+
LLM_BENCHMARKS_TEXT,
|
13 |
+
TITLE,
|
14 |
+
)
|
15 |
+
from src.display.css_html_js import custom_css
|
16 |
+
from src.display.utils import (
|
17 |
+
BENCHMARK_COLS,
|
18 |
+
COLS,
|
19 |
+
EVAL_COLS,
|
20 |
+
EVAL_TYPES,
|
21 |
+
TYPES,
|
22 |
+
AutoEvalColumn,
|
23 |
+
ModelType,
|
24 |
+
fields,
|
25 |
+
WeightType,
|
26 |
+
Precision,
|
27 |
+
NUMERIC_INTERVALS
|
28 |
+
)
|
29 |
+
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, DYNAMIC_INFO_REPO, DYNAMIC_INFO_FILE_PATH, DYNAMIC_INFO_PATH, IS_PUBLIC, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
|
30 |
+
from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
31 |
+
from src.submission.submit import add_new_eval
|
32 |
+
from src.scripts.update_all_request_files import update_dynamic_files
|
33 |
+
from src.tools.collections import update_collections
|
34 |
+
from src.tools.datastatics import get_statics
|
35 |
+
from src.tools.plots import (
|
36 |
+
create_metric_plot_obj,
|
37 |
+
create_plot_df,
|
38 |
+
create_scores_df,
|
39 |
+
)
|
40 |
+
|
41 |
+
def restart_space():
|
42 |
+
API.restart_space(repo_id=REPO_ID, token=TOKEN)
|
43 |
+
|
44 |
+
|
45 |
+
def init_space():
|
46 |
+
print("begin init space")
|
47 |
+
### Space initialisation
|
48 |
+
try:
|
49 |
+
print(EVAL_REQUESTS_PATH)
|
50 |
+
snapshot_download(
|
51 |
+
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
|
52 |
+
)
|
53 |
+
except Exception:
|
54 |
+
restart_space()
|
55 |
+
try:
|
56 |
+
print(EVAL_RESULTS_PATH)
|
57 |
+
snapshot_download(
|
58 |
+
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
|
59 |
+
)
|
60 |
+
except Exception:
|
61 |
+
restart_space()
|
62 |
+
|
63 |
+
raw_data, original_df = get_leaderboard_df(
|
64 |
+
#leaderboard_df = get_leaderboard_df(
|
65 |
+
results_path=EVAL_RESULTS_PATH,
|
66 |
+
requests_path=EVAL_REQUESTS_PATH,
|
67 |
+
dynamic_path=DYNAMIC_INFO_FILE_PATH,
|
68 |
+
cols=COLS,
|
69 |
+
benchmark_cols=BENCHMARK_COLS
|
70 |
+
)
|
71 |
+
update_collections(original_df.copy())
|
72 |
+
leaderboard_df = original_df.copy()
|
73 |
+
|
74 |
+
plot_df = create_plot_df(create_scores_df(raw_data))
|
75 |
+
|
76 |
+
(
|
77 |
+
finished_eval_queue_df,
|
78 |
+
running_eval_queue_df,
|
79 |
+
pending_eval_queue_df,
|
80 |
+
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
81 |
+
|
82 |
+
return leaderboard_df, original_df, plot_df, finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df
|
83 |
+
|
84 |
+
leaderboard_df, original_df, plot_df, finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = init_space()
|
85 |
+
#return leaderboard_df, finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df
|
86 |
+
|
87 |
+
#leaderboard_df, finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = init_space()
|
88 |
+
|
89 |
+
|
90 |
+
# Searching and filtering
|
91 |
+
def update_table(
|
92 |
+
hidden_df: pd.DataFrame,
|
93 |
+
columns: list,
|
94 |
+
type_query: list,
|
95 |
+
precision_query: str,
|
96 |
+
size_query: list,
|
97 |
+
hide_models: list,
|
98 |
+
query: str,
|
99 |
+
):
|
100 |
+
filtered_df = filter_models(df=hidden_df, type_query=type_query, size_query=size_query, precision_query=precision_query, hide_models=hide_models)
|
101 |
+
filtered_df = filter_queries(query, filtered_df)
|
102 |
+
df = select_columns(filtered_df, columns)
|
103 |
+
return df
|
104 |
+
|
105 |
+
|
106 |
+
def load_query(request: gr.Request): # triggered only once at startup => read query parameter if it exists
|
107 |
+
query = request.query_params.get("query") or ""
|
108 |
+
return query, query # return one for the "search_bar", one for a hidden component that triggers a reload only if value has changed
|
109 |
+
|
110 |
+
|
111 |
+
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
|
112 |
+
return df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))]
|
113 |
+
|
114 |
+
|
115 |
+
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
|
116 |
+
always_here_cols = [c.name for c in fields(AutoEvalColumn) if c.never_hidden]
|
117 |
+
dummy_col = [AutoEvalColumn.dummy.name]
|
118 |
+
#AutoEvalColumn.model_type_symbol.name,
|
119 |
+
#AutoEvalColumn.model.name,
|
120 |
+
# We use COLS to maintain sorting
|
121 |
+
filtered_df = df[
|
122 |
+
always_here_cols + [c for c in COLS if c in df.columns and c in columns] + dummy_col
|
123 |
+
]
|
124 |
+
return filtered_df
|
125 |
+
|
126 |
+
|
127 |
+
def filter_queries(query: str, filtered_df: pd.DataFrame):
|
128 |
+
"""Added by Abishek"""
|
129 |
+
final_df = []
|
130 |
+
if query != "":
|
131 |
+
queries = [q.strip() for q in query.split(";")]
|
132 |
+
for _q in queries:
|
133 |
+
_q = _q.strip()
|
134 |
+
if _q != "":
|
135 |
+
temp_filtered_df = search_table(filtered_df, _q)
|
136 |
+
if len(temp_filtered_df) > 0:
|
137 |
+
final_df.append(temp_filtered_df)
|
138 |
+
if len(final_df) > 0:
|
139 |
+
filtered_df = pd.concat(final_df)
|
140 |
+
filtered_df = filtered_df.drop_duplicates(
|
141 |
+
subset=[AutoEvalColumn.model.name, AutoEvalColumn.precision.name, AutoEvalColumn.revision.name]
|
142 |
+
)
|
143 |
+
|
144 |
+
return filtered_df
|
145 |
+
|
146 |
+
|
147 |
+
def filter_models(
|
148 |
+
df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, hide_models: list
|
149 |
+
) -> pd.DataFrame:
|
150 |
+
# Show all models
|
151 |
+
if "Private or deleted" in hide_models:
|
152 |
+
filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]
|
153 |
+
else:
|
154 |
+
filtered_df = df
|
155 |
+
|
156 |
+
if "Contains a merge/moerge" in hide_models:
|
157 |
+
filtered_df = filtered_df[filtered_df[AutoEvalColumn.merged.name] == False]
|
158 |
+
|
159 |
+
if "MoE" in hide_models:
|
160 |
+
filtered_df = filtered_df[filtered_df[AutoEvalColumn.moe.name] == False]
|
161 |
+
|
162 |
+
if "Flagged" in hide_models:
|
163 |
+
filtered_df = filtered_df[filtered_df[AutoEvalColumn.flagged.name] == False]
|
164 |
+
|
165 |
+
type_emoji = [t[0] for t in type_query]
|
166 |
+
filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
|
167 |
+
filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
|
168 |
+
|
169 |
+
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
|
170 |
+
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
|
171 |
+
mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
|
172 |
+
filtered_df = filtered_df.loc[mask]
|
173 |
+
|
174 |
+
return filtered_df
|
175 |
+
|
176 |
+
leaderboard_df = filter_models(
|
177 |
+
df=leaderboard_df,
|
178 |
+
type_query=[t.to_str(" : ") for t in ModelType],
|
179 |
+
size_query=list(NUMERIC_INTERVALS.keys()),
|
180 |
+
precision_query=[i.value.name for i in Precision],
|
181 |
+
hide_models=[], # Deleted, merges, flagged, MoEs
|
182 |
+
)
|
183 |
+
|
184 |
+
|
185 |
+
|
186 |
+
demo = gr.Blocks(css=custom_css)
|
187 |
+
with demo:
|
188 |
+
gr.HTML(TITLE)
|
189 |
+
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
190 |
+
|
191 |
+
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
192 |
+
with gr.TabItem("🏅 VLM Benchmark", elem_id="vlm-benchmark-tab-table", id=0):
|
193 |
+
#leaderboard = init_leaderboard(LEADERBOARD_DF)
|
194 |
+
with gr.Row():
|
195 |
+
with gr.Column():
|
196 |
+
with gr.Row():
|
197 |
+
search_bar = gr.Textbox(
|
198 |
+
placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...",
|
199 |
+
show_label=False,
|
200 |
+
elem_id="search-bar",
|
201 |
+
)
|
202 |
+
with gr.Row():
|
203 |
+
shown_columns = gr.CheckboxGroup(
|
204 |
+
choices=[
|
205 |
+
c.name
|
206 |
+
for c in fields(AutoEvalColumn)
|
207 |
+
if not c.hidden and not c.never_hidden and not c.dummy
|
208 |
+
],
|
209 |
+
value=[
|
210 |
+
c.name
|
211 |
+
for c in fields(AutoEvalColumn)
|
212 |
+
if c.displayed_by_default and not c.hidden and not c.never_hidden
|
213 |
+
],
|
214 |
+
label="Select columns to show",
|
215 |
+
elem_id="column-select",
|
216 |
+
interactive=True,
|
217 |
+
)
|
218 |
+
with gr.Row():
|
219 |
+
hide_models = gr.CheckboxGroup(
|
220 |
+
label="Hide models",
|
221 |
+
choices = ["Private or deleted", "Contains a merge/moerge", "Flagged", "MoE"],
|
222 |
+
value=[],
|
223 |
+
interactive=True
|
224 |
+
)
|
225 |
+
with gr.Column(min_width=320):
|
226 |
+
#with gr.Box(elem_id="box-filter"):
|
227 |
+
filter_columns_type = gr.CheckboxGroup(
|
228 |
+
label="Model types",
|
229 |
+
choices=[t.to_str() for t in ModelType],
|
230 |
+
value=[t.to_str() for t in ModelType],
|
231 |
+
interactive=True,
|
232 |
+
elem_id="filter-columns-type",
|
233 |
+
)
|
234 |
+
filter_columns_precision = gr.CheckboxGroup(
|
235 |
+
label="Precision",
|
236 |
+
choices=[i.value.name for i in Precision],
|
237 |
+
value=[i.value.name for i in Precision],
|
238 |
+
interactive=True,
|
239 |
+
elem_id="filter-columns-precision",
|
240 |
+
)
|
241 |
+
filter_columns_size = gr.CheckboxGroup(
|
242 |
+
label="Model sizes (in billions of parameters)",
|
243 |
+
choices=list(NUMERIC_INTERVALS.keys()),
|
244 |
+
value=list(NUMERIC_INTERVALS.keys()),
|
245 |
+
interactive=True,
|
246 |
+
elem_id="filter-columns-size",
|
247 |
+
)
|
248 |
+
|
249 |
+
leaderboard_table = gr.components.Dataframe(
|
250 |
+
value=leaderboard_df[
|
251 |
+
[c.name for c in fields(AutoEvalColumn) if c.never_hidden]
|
252 |
+
+ shown_columns.value
|
253 |
+
+ [AutoEvalColumn.dummy.name]
|
254 |
+
],
|
255 |
+
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
256 |
+
datatype=TYPES,
|
257 |
+
elem_id="leaderboard-table",
|
258 |
+
interactive=False,
|
259 |
+
visible=True,
|
260 |
+
#column_widths=["2%", "33%"]
|
261 |
+
)
|
262 |
+
|
263 |
+
# Dummy leaderboard for handling the case when the user uses backspace key
|
264 |
+
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
265 |
+
value=original_df[COLS],
|
266 |
+
#value=leaderboard_df[COLS],
|
267 |
+
headers=COLS,
|
268 |
+
datatype=TYPES,
|
269 |
+
visible=False,
|
270 |
+
)
|
271 |
+
search_bar.submit(
|
272 |
+
update_table,
|
273 |
+
[
|
274 |
+
hidden_leaderboard_table_for_search,
|
275 |
+
shown_columns,
|
276 |
+
filter_columns_type,
|
277 |
+
filter_columns_precision,
|
278 |
+
filter_columns_size,
|
279 |
+
hide_models,
|
280 |
+
search_bar,
|
281 |
+
],
|
282 |
+
leaderboard_table,
|
283 |
+
)
|
284 |
+
|
285 |
+
# Define a hidden component that will trigger a reload only if a query parameter has been set
|
286 |
+
hidden_search_bar = gr.Textbox(value="", visible=False)
|
287 |
+
hidden_search_bar.change(
|
288 |
+
update_table,
|
289 |
+
[
|
290 |
+
hidden_leaderboard_table_for_search,
|
291 |
+
shown_columns,
|
292 |
+
filter_columns_type,
|
293 |
+
filter_columns_precision,
|
294 |
+
filter_columns_size,
|
295 |
+
hide_models,
|
296 |
+
search_bar,
|
297 |
+
],
|
298 |
+
leaderboard_table,
|
299 |
+
)
|
300 |
+
# Check query parameter once at startup and update search bar + hidden component
|
301 |
+
demo.load(load_query, inputs=[], outputs=[search_bar, hidden_search_bar])
|
302 |
+
|
303 |
+
for selector in [shown_columns, filter_columns_type, filter_columns_precision, filter_columns_size, hide_models]:
|
304 |
+
selector.change(
|
305 |
+
update_table,
|
306 |
+
[
|
307 |
+
hidden_leaderboard_table_for_search,
|
308 |
+
shown_columns,
|
309 |
+
filter_columns_type,
|
310 |
+
filter_columns_precision,
|
311 |
+
filter_columns_size,
|
312 |
+
hide_models,
|
313 |
+
search_bar,
|
314 |
+
],
|
315 |
+
leaderboard_table,
|
316 |
+
queue=True,
|
317 |
+
)
|
318 |
+
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
|
319 |
+
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
320 |
+
|
321 |
+
|
322 |
+
with gr.Row():
|
323 |
+
with gr.Accordion("📙 Citation", open=False):
|
324 |
+
citation_button = gr.Textbox(
|
325 |
+
value=CITATION_BUTTON_TEXT,
|
326 |
+
label=CITATION_BUTTON_LABEL,
|
327 |
+
lines=20,
|
328 |
+
elem_id="citation-button",
|
329 |
+
show_copy_button=True,
|
330 |
+
)
|
331 |
+
|
332 |
+
scheduler = BackgroundScheduler()
|
333 |
+
scheduler.add_job(restart_space, "interval", seconds=1800)
|
334 |
+
scheduler.add_job(update_dynamic_files, "cron", minute=30) # launched every hour on the hour
|
335 |
+
scheduler.add_job(get_statics, 'cron', hour=12, minute=15, timezone='Asia/Shanghai') # 添加定时任务,每天0:30执行一次
|
336 |
+
scheduler.start()
|
337 |
+
demo.queue(default_concurrency_limit=40).launch()
|
src/__pycache__/envs.cpython-313.pyc
ADDED
Binary file (1.77 kB). View file
|
|
src/about.py
ADDED
@@ -0,0 +1,222 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
from enum import Enum
|
3 |
+
|
4 |
+
@dataclass
|
5 |
+
class Task:
|
6 |
+
benchmark: str
|
7 |
+
metric: str
|
8 |
+
col_name: str
|
9 |
+
|
10 |
+
|
11 |
+
# Select your tasks here
|
12 |
+
# ---------------------------------------------------
|
13 |
+
class Tasks(Enum):
|
14 |
+
# task_key in the json file, metric_key in the json file, name to display in the leaderboard
|
15 |
+
Where2Place = Task("Where2Place", "overall", "Where2Place")
|
16 |
+
blink_val_ev= Task("blink_val_ev", "overall", "blink_val_ev")
|
17 |
+
cv_bench_test = Task("cv_bench_test", "overall", "cv_bench_test")
|
18 |
+
robo_spatial_home_all = Task("robo_spatial_home_all", "overall", "robo_spatial_home_all")
|
19 |
+
embspatial_bench = Task("embspatial_bench", "overall", "embspatial_bench")
|
20 |
+
all_angles_bench = Task("all_angles_bench", "overall", "all_angles_bench")
|
21 |
+
vsi_bench_tiny = Task("vsi_bench_tiny", "overall", "vsi_bench_tiny")
|
22 |
+
SAT = Task("SAT", "overall", "SAT")
|
23 |
+
egoplan_bench2 = Task("egoplan_bench2", "overall", "egoplan_bench2")
|
24 |
+
erqa = Task("erqa", "overall", "erqa")
|
25 |
+
|
26 |
+
NUM_FEWSHOT = 0 # Change with your few shot
|
27 |
+
# ---------------------------------------------------
|
28 |
+
|
29 |
+
|
30 |
+
|
31 |
+
# Your leaderboard name
|
32 |
+
TITLE = """<h1 align="center" id="space-title">Open FlagEval-VLM Leaderboard</h1>"""
|
33 |
+
|
34 |
+
# What does your leaderboard evaluate?
|
35 |
+
|
36 |
+
INTRODUCTION_TEXT = """
|
37 |
+
欢迎使用FlagEval-Embodied Verse!
|
38 |
+
FlagEval-Embodied Verse 旨在通过FlagEval具身工具链跟踪、排名和评估具身大模型(Embodied model),其中FlagEvalMM提供了多模态评估架构,Embodied Verse构建了一种基于具身智能高质量评测数据集的能力体系,Leaderboard则通过榜单实时跟踪并呈现不同具身大模型综合能力。
|
39 |
+
|
40 |
+
Welcome to the FlagEval-Embodied Verse!
|
41 |
+
FlagEval-Embodied Verse aims to track, rank, and evaluate embodied large models (Embodied models) through the FlagEval embodied toolchain.
|
42 |
+
FlagEvalMM provides a multimodal evaluation framework, while Embodied Verse builds a capability system based on high-quality evaluation datasets for embodied intelligence. The Leaderboard tracks and presents the comprehensive capabilities of different embodied large models in real time through a leaderboard.
|
43 |
+
"""
|
44 |
+
# Which evaluations are you running? how can people reproduce what you have?
|
45 |
+
LLM_BENCHMARKS_TEXT = f"""
|
46 |
+
|
47 |
+
# The Goal of FlagEval - Embodied Verse
|
48 |
+
|
49 |
+
感谢您积极的参与评测,在未来,我们会持续推动 FlagEval - Embodied Verse 更加完善,维护生态开放,欢迎开发者参与评测方法、工具和数据集的探讨,让我们一起建设更加科学、开放的具身评测工具链。
|
50 |
+
|
51 |
+
Thanks for your active participation in the evaluation. In the future, we will continue to promote FlagEval - Embodied Verse to be more perfect and maintain the openness of the ecosystem, and we welcome developers to participate in the discussion of evaluation methodology, tools and datasets, so that we can build a more scientific and open embodied evaluation toolchain together.
|
52 |
+
|
53 |
+
# Context
|
54 |
+
|
55 |
+
FlagEval-Embodied Verse是科学、全面的具身评测工具链,具体包括FlagEvalMM多模态评估框架、Embodied Verse具身智能高质量评测数据集以及Leaderboard具身模型能力可视化榜单。我们希望能够推动更加开放的生态,让具身智能大模型开发者参与进来,为推动具身智能大模型进步做出相应的贡献。为了实现公平性的目标,所有模型都在 FlagEvalMM框架下使用标准化 GPU 和统一环境进行评估,以确保公平性。
|
56 |
+
|
57 |
+
FlagEval-Embodied Verse is a scientific and comprehensive embodied evaluation toolchain, which specifically includes the FlagEvalMM multimodal evaluation framework, the Embodied Verse high-quality embodied intelligence evaluation dataset, and the Leaderboard for visualizing the capabilities of embodied models.
|
58 |
+
|
59 |
+
We hope to promote a more open ecosystem for embodied model developers to participate and contribute accordingly to the advancement of embodied models. To achieve the goal of fairness, all models are evaluated all models are evaluated under the FlagEvalMM framework using standardized GPUs and a unified environment to ensure fairness.
|
60 |
+
|
61 |
+
#How it works
|
62 |
+
|
63 |
+
## Embodied verse tool - FlagEvalMM
|
64 |
+
FlagEvalMM是一个开源评估框架,旨在全面评估多模态模型,其提供了一种标准化的方法来评估跨各种任务和指标使用多种模式(文本、图像、视频)的模型。
|
65 |
+
|
66 |
+
- 灵活的架构:支持多个多模态模型和评估任务,包括VQA、图像检索、文本到图像等。
|
67 |
+
- 全面的基准与度量:支持最新的和常用的基准和度量。
|
68 |
+
- 广泛的模型支持:model_zoo为广泛流行的多模态模型(包括QWenVL和LLaVA)提供了推理支持。此外,它还提供了与基于API的模型(如GPT、Claude和HuanYuan)的无缝集成。
|
69 |
+
- 可扩展的设计:易于扩展,可合并新的模型、基准和评估指标。
|
70 |
+
|
71 |
+
FlagEvalMM is an open-source evaluation framework designed to comprehensively assess multimodal models. It provides a standardized way to evaluate models that work with multiple modalities (text, images, video) across various tasks and metrics.
|
72 |
+
|
73 |
+
- Flexible Architecture: Support for multiple multimodal models and evaluation tasks, including: VQA, image retrieval, text-to-image, etc.
|
74 |
+
- Comprehensive Benchmarks and Metrics: Support new and commonly used benchmarks and metrics.
|
75 |
+
- Extensive Model Support: The model_zoo provides inference support for a wide range of popular multimodal models including QWenVL and LLaVA. Additionally, it offers seamless integration with API-based models such as GPT, Claude, and HuanYuan.
|
76 |
+
- Extensible Design: Easily extendable to incorporate new models, benchmarks, and evaluation metrics.
|
77 |
+
|
78 |
+
# Embodied verse
|
79 |
+
|
80 |
+
## Details and logs
|
81 |
+
You can find:
|
82 |
+
- detailed numerical results in the results Hugging Face dataset: https://huggingface.co/datasets/open-cn-llm-leaderboard/EmbodiedVerse_results
|
83 |
+
- community queries and running status in the requests Hugging Face dataset: https://huggingface.co/datasets/open-cn-llm-leaderboard/EmbodiedVerse_requests
|
84 |
+
|
85 |
+
## Useful links
|
86 |
+
- [FlagEvalMM](https://github.com/flageval-baai/FlagEvalMM)
|
87 |
+
- [FlagEval](https://flageval.baai.ac.cn/#/home)
|
88 |
+
- [VLM Leaderboard](https://huggingface.co/spaces/BAAI/open_flageval_vlm_leaderboard)
|
89 |
+
|
90 |
+
"""
|
91 |
+
|
92 |
+
EVALUATION_QUEUE_TEXT = """
|
93 |
+
## Evaluation Queue for the FlagEval VLM Leaderboard
|
94 |
+
Models added here will be automatically evaluated on the FlagEval cluster.
|
95 |
+
|
96 |
+
Currently, we offer two methods for model evaluation, including API calls and private deployments:
|
97 |
+
1. If you choose to evaluate via API call, you need to provide the Model interface, name and corresponding API key.
|
98 |
+
2. If you choose to do open source model evaluation directly through huggingface, you don't need to fill in the Model online api url and Model online api key.
|
99 |
+
|
100 |
+
## Open API model Integration Documentation
|
101 |
+
|
102 |
+
For models accessed via API calls (such as OpenAI API, Anthropic API, etc.), the integration process is straightforward and only requires providing necessary configuration information.
|
103 |
+
1. model_name: Name of the model to use
|
104 |
+
2. api_key: API access key
|
105 |
+
3. api_base: Base URL for the API service
|
106 |
+
|
107 |
+
## Adding a Custom Model to the Platform
|
108 |
+
|
109 |
+
This guide explains how to integrate your custom model into the platform by implementing a model adapter and run.sh script. We'll use the Qwen-VL implementation as a reference example.
|
110 |
+
|
111 |
+
### Overview
|
112 |
+
|
113 |
+
To add your custom model, you need to:
|
114 |
+
1. Create a custom dataset class
|
115 |
+
2. Implement a model adapter class
|
116 |
+
3. Set up the initialization and inference pipeline
|
117 |
+
|
118 |
+
### Step-by-Step Implementation
|
119 |
+
|
120 |
+
Here is an example:[model_adapter.py](https://github.com/flageval-baai/FlagEvalMM/blob/main/model_zoo/vlm/qwen_vl/model_adapter.py)
|
121 |
+
|
122 |
+
#### 1. Create Preprocess Custom Dataset Class
|
123 |
+
|
124 |
+
Inherit from `ServerDataset` to handle data loading:
|
125 |
+
```python
|
126 |
+
# model_adapter.py
|
127 |
+
class CustomDataset(ServerDataset):
|
128 |
+
def __getitem__(self, index):
|
129 |
+
data = self.get_data(index)
|
130 |
+
question_id = data["question_id"]
|
131 |
+
img_path = data["img_path"]
|
132 |
+
qs = data["question"]
|
133 |
+
qs, idx = process_images_symbol(qs)
|
134 |
+
idx = set(idx)
|
135 |
+
img_path_idx = []
|
136 |
+
for i in idx:
|
137 |
+
if i < len(img_path):
|
138 |
+
img_path_idx.append(img_path[i])
|
139 |
+
else:
|
140 |
+
print("[warning] image index out of range")
|
141 |
+
return question_id, img_path_idx, qs
|
142 |
+
```
|
143 |
+
|
144 |
+
The function `get_data` returns a structure like this:
|
145 |
+
```python
|
146 |
+
{
|
147 |
+
"img_path": "A list where each element is an absolute path to an image that can be read directly using PIL, cv2, etc.",
|
148 |
+
"question": "A string containing the question, where image positions are marked with <image1> <image2>",
|
149 |
+
"question_id": "question_id",
|
150 |
+
"type": "A string indicating the type of question"
|
151 |
+
}
|
152 |
+
```
|
153 |
+
|
154 |
+
#### 2. Implement Model Adapter
|
155 |
+
|
156 |
+
Inherit from `BaseModelAdapter` and implement the required methods:
|
157 |
+
1. model_init: is responsible for model initialization and serves as the entry point for model loading and setup.
|
158 |
+
2. run_one_task: implements the inference pipeline, handling data processing and result generation for a single evaluation task.
|
159 |
+
```python
|
160 |
+
# model_adapter.py
|
161 |
+
class ModelAdapter(BaseModelAdapter):
|
162 |
+
def model_init(self, task_info: Dict):
|
163 |
+
ckpt_path = task_info["model_path"]
|
164 |
+
'''
|
165 |
+
Initialize the model and processor here.
|
166 |
+
Load your pre-trained model and any required processing tools using the provided checkpoint path.
|
167 |
+
'''
|
168 |
+
|
169 |
+
def run_one_task(self, task_name: str, meta_info: Dict[str, Any]):
|
170 |
+
results = []
|
171 |
+
cnt = 0
|
172 |
+
|
173 |
+
data_loader = self.create_data_loader(
|
174 |
+
CustomDataset, task_name, batch_size=1, num_workers=0
|
175 |
+
)
|
176 |
+
|
177 |
+
for question_id, img_path, qs in data_loader:
|
178 |
+
|
179 |
+
'''
|
180 |
+
Perform model inference here.
|
181 |
+
Use the model to generate the 'answer' variable for the given inputs (e.g., question_id, image path, question).
|
182 |
+
'''
|
183 |
+
|
184 |
+
results.append(
|
185 |
+
{"question_id": question_id, "answer": answer}
|
186 |
+
)
|
187 |
+
|
188 |
+
self.save_result(results, meta_info, rank=rank)
|
189 |
+
'''
|
190 |
+
Save the inference results.
|
191 |
+
Use the provided meta_info and rank parameters to manage result storage as needed.
|
192 |
+
'''
|
193 |
+
```
|
194 |
+
Note:
|
195 |
+
`results` is a list of dictionaries
|
196 |
+
Each dictionary must contain two keys:
|
197 |
+
```python
|
198 |
+
question_id: identifies the specific question
|
199 |
+
answer: contains the model's prediction/output
|
200 |
+
```
|
201 |
+
After collecting all results, they are saved using `save_result()`
|
202 |
+
|
203 |
+
#### 3. Launch Script (run.sh)
|
204 |
+
run.sh is the entry script for launching model evaluation, used to set environment variables and start the evaluation program.
|
205 |
+
|
206 |
+
```python
|
207 |
+
#!/bin/bash
|
208 |
+
current_file="$0"
|
209 |
+
current_dir="$(dirname "$current_file")"
|
210 |
+
SERVER_IP=$1
|
211 |
+
SERVER_PORT=$2
|
212 |
+
PYTHONPATH=$current_dir:$PYTHONPATH python $current_dir/model_adapter.py \
|
213 |
+
--server_ip $SERVER_IP \
|
214 |
+
--server_port $SERVER_PORT \
|
215 |
+
"${@:3}"
|
216 |
+
```
|
217 |
+
|
218 |
+
"""
|
219 |
+
|
220 |
+
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
|
221 |
+
CITATION_BUTTON_TEXT = r"""
|
222 |
+
"""
|
src/display/__pycache__/formatting.cpython-313.pyc
ADDED
Binary file (1.76 kB). View file
|
|
src/display/css_html_js.py
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
custom_css = """
|
2 |
+
|
3 |
+
.markdown-text {
|
4 |
+
font-size: 16px !important;
|
5 |
+
}
|
6 |
+
|
7 |
+
#models-to-add-text {
|
8 |
+
font-size: 18px !important;
|
9 |
+
}
|
10 |
+
|
11 |
+
#citation-button span {
|
12 |
+
font-size: 16px !important;
|
13 |
+
}
|
14 |
+
|
15 |
+
#citation-button textarea {
|
16 |
+
font-size: 16px !important;
|
17 |
+
}
|
18 |
+
|
19 |
+
#citation-button > label > button {
|
20 |
+
margin: 6px;
|
21 |
+
transform: scale(1.3);
|
22 |
+
}
|
23 |
+
|
24 |
+
#leaderboard-table {
|
25 |
+
margin-top: 15px
|
26 |
+
}
|
27 |
+
|
28 |
+
#leaderboard-table-lite {
|
29 |
+
margin-top: 15px
|
30 |
+
}
|
31 |
+
|
32 |
+
#search-bar-table-box > div:first-child {
|
33 |
+
background: none;
|
34 |
+
border: none;
|
35 |
+
}
|
36 |
+
|
37 |
+
#search-bar {
|
38 |
+
padding: 0px;
|
39 |
+
}
|
40 |
+
|
41 |
+
/* Limit the width of the first AutoEvalColumn so that names don't expand too much */
|
42 |
+
#leaderboard-table td:nth-child(2),
|
43 |
+
#leaderboard-table th:nth-child(2) {
|
44 |
+
max-width: 400px;
|
45 |
+
overflow: auto;
|
46 |
+
white-space: nowrap;
|
47 |
+
}
|
48 |
+
|
49 |
+
.tab-buttons button {
|
50 |
+
font-size: 20px;
|
51 |
+
}
|
52 |
+
|
53 |
+
#scale-logo {
|
54 |
+
border-style: none !important;
|
55 |
+
box-shadow: none;
|
56 |
+
display: block;
|
57 |
+
margin-left: auto;
|
58 |
+
margin-right: auto;
|
59 |
+
max-width: 600px;
|
60 |
+
}
|
61 |
+
|
62 |
+
#scale-logo .download {
|
63 |
+
display: none;
|
64 |
+
}
|
65 |
+
#filter_type{
|
66 |
+
border: 0;
|
67 |
+
padding-left: 0;
|
68 |
+
padding-top: 0;
|
69 |
+
}
|
70 |
+
#filter_type label {
|
71 |
+
display: flex;
|
72 |
+
}
|
73 |
+
#filter_type label > span{
|
74 |
+
margin-top: var(--spacing-lg);
|
75 |
+
margin-right: 0.5em;
|
76 |
+
}
|
77 |
+
#filter_type label > .wrap{
|
78 |
+
width: 103px;
|
79 |
+
}
|
80 |
+
#filter_type label > .wrap .wrap-inner{
|
81 |
+
padding: 2px;
|
82 |
+
}
|
83 |
+
#filter_type label > .wrap .wrap-inner input{
|
84 |
+
width: 1px
|
85 |
+
}
|
86 |
+
#filter-columns-type{
|
87 |
+
border:0;
|
88 |
+
padding:0.5;
|
89 |
+
}
|
90 |
+
#filter-columns-size{
|
91 |
+
border:0;
|
92 |
+
padding:0.5;
|
93 |
+
}
|
94 |
+
#box-filter > .form{
|
95 |
+
border: 0
|
96 |
+
}
|
97 |
+
"""
|
98 |
+
|
99 |
+
get_window_url_params = """
|
100 |
+
function(url_params) {
|
101 |
+
const params = new URLSearchParams(window.location.search);
|
102 |
+
url_params = Object.fromEntries(params);
|
103 |
+
return url_params;
|
104 |
+
}
|
105 |
+
"""
|
src/display/formatting.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
def model_hyperlink(link, model_name):
|
2 |
+
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
|
3 |
+
|
4 |
+
|
5 |
+
def make_clickable_model(model_name):
|
6 |
+
link = f"https://huggingface.co/{model_name}"
|
7 |
+
return model_hyperlink(link, model_name)
|
8 |
+
|
9 |
+
|
10 |
+
def styled_error(error):
|
11 |
+
return f"<p style='color: red; font-size: 20px; text-align: center;'>{error}</p>"
|
12 |
+
|
13 |
+
|
14 |
+
def styled_warning(warn):
|
15 |
+
return f"<p style='color: orange; font-size: 20px; text-align: center;'>{warn}</p>"
|
16 |
+
|
17 |
+
|
18 |
+
def styled_message(message):
|
19 |
+
return f"<p style='color: green; font-size: 20px; text-align: center;'>{message}</p>"
|
20 |
+
|
21 |
+
|
22 |
+
def has_no_nan_values(df, columns):
|
23 |
+
return df[columns].notna().all(axis=1)
|
24 |
+
|
25 |
+
|
26 |
+
def has_nan_values(df, columns):
|
27 |
+
return df[columns].isna().any(axis=1)
|
src/display/utils.py
ADDED
@@ -0,0 +1,186 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass, make_dataclass
|
2 |
+
from enum import Enum
|
3 |
+
|
4 |
+
import pandas as pd
|
5 |
+
|
6 |
+
from src.about import Tasks
|
7 |
+
|
8 |
+
def fields(raw_class):
|
9 |
+
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
|
10 |
+
|
11 |
+
|
12 |
+
# These classes are for user facing column names,
|
13 |
+
# to avoid having to change them all around the code
|
14 |
+
# when a modif is needed
|
15 |
+
@dataclass
|
16 |
+
class ColumnContent:
|
17 |
+
name: str
|
18 |
+
type: str
|
19 |
+
displayed_by_default: bool
|
20 |
+
hidden: bool = False
|
21 |
+
never_hidden: bool = False
|
22 |
+
dummy: bool = False
|
23 |
+
|
24 |
+
## Leaderboard columns
|
25 |
+
auto_eval_column_dict = []
|
26 |
+
# Init
|
27 |
+
auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
|
28 |
+
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
|
29 |
+
#Scores
|
30 |
+
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)])
|
31 |
+
for task in Tasks:
|
32 |
+
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
|
33 |
+
# Model information
|
34 |
+
auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
|
35 |
+
#auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
|
36 |
+
auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
|
37 |
+
auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
|
38 |
+
#auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
|
39 |
+
auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
|
40 |
+
#auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False)])
|
41 |
+
#auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
|
42 |
+
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
|
43 |
+
#auto_eval_column_dict.append(["merged", ColumnContent, ColumnContent("Merged", "bool", False)])
|
44 |
+
auto_eval_column_dict.append(["flagged", ColumnContent, ColumnContent("Flagged", "bool", False, hidden=True)])
|
45 |
+
auto_eval_column_dict.append(["moe", ColumnContent, ColumnContent("MoE", "bool", False, hidden=True)])
|
46 |
+
# Dummy column for the search bar (hidden by the custom CSS)
|
47 |
+
auto_eval_column_dict.append(["dummy", ColumnContent, ColumnContent("model_name_for_query", "str", False, dummy=True)])
|
48 |
+
|
49 |
+
# We use make dataclass to dynamically fill the scores from Tasks
|
50 |
+
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
|
51 |
+
|
52 |
+
## For the queue columns in the submission tab
|
53 |
+
@dataclass(frozen=True)
|
54 |
+
class EvalQueueColumn: # Queue column
|
55 |
+
model = ColumnContent("model", "markdown", True)
|
56 |
+
revision = ColumnContent("revision", "str", True)
|
57 |
+
private = ColumnContent("private", "bool", True)
|
58 |
+
precision = ColumnContent("precision", "str", True)
|
59 |
+
weight_type = ColumnContent("weight_type", "str", "Original")
|
60 |
+
status = ColumnContent("status", "str", True)
|
61 |
+
|
62 |
+
## All the model information that we might need
|
63 |
+
|
64 |
+
|
65 |
+
@dataclass
|
66 |
+
class ModelDetails:
|
67 |
+
name: str
|
68 |
+
display_name: str = ""
|
69 |
+
symbol: str = "" # emoji
|
70 |
+
|
71 |
+
|
72 |
+
class ModelType(Enum):
|
73 |
+
PT = ModelDetails(name="pretrained", symbol="🟢")
|
74 |
+
FT = ModelDetails(name="fine-tuned on domain-specific datasets", symbol="🔶")
|
75 |
+
chat = ModelDetails(name="chat models (RLHF, DPO, IFT, ...)", symbol="💬")
|
76 |
+
merges = ModelDetails(name="base merges and moerges", symbol="🤝")
|
77 |
+
Unknown = ModelDetails(name="", symbol="?")
|
78 |
+
|
79 |
+
def to_str(self, separator=" "):
|
80 |
+
return f"{self.value.symbol}{separator}{self.value.name}"
|
81 |
+
|
82 |
+
@staticmethod
|
83 |
+
def from_str(type):
|
84 |
+
if "fine-tuned" in type or "🔶" in type:
|
85 |
+
return ModelType.FT
|
86 |
+
if "pretrained" in type or "🟢" in type:
|
87 |
+
return ModelType.PT
|
88 |
+
if any([k in type for k in ["instruction-tuned", "RL-tuned", "chat", "🟦", "⭕", "💬"]]):
|
89 |
+
return ModelType.chat
|
90 |
+
if "merge" in type or "🤝" in type:
|
91 |
+
return ModelType.merges
|
92 |
+
return ModelType.Unknown
|
93 |
+
|
94 |
+
class WeightType(Enum):
|
95 |
+
Adapter = ModelDetails("Adapter")
|
96 |
+
Original = ModelDetails("Original")
|
97 |
+
Delta = ModelDetails("Delta")
|
98 |
+
|
99 |
+
class Precision(Enum):
|
100 |
+
float16 = ModelDetails("float16")
|
101 |
+
bfloat16 = ModelDetails("bfloat16")
|
102 |
+
qt_8bit = ModelDetails("8bit")
|
103 |
+
qt_4bit = ModelDetails("4bit")
|
104 |
+
qt_GPTQ = ModelDetails("GPTQ")
|
105 |
+
Unknown = ModelDetails("?")
|
106 |
+
|
107 |
+
def from_str(precision):
|
108 |
+
if precision in ["torch.float16", "float16"]:
|
109 |
+
return Precision.float16
|
110 |
+
if precision in ["torch.bfloat16", "bfloat16"]:
|
111 |
+
return Precision.bfloat16
|
112 |
+
if precision in ["8bit"]:
|
113 |
+
return Precision.qt_8bit
|
114 |
+
if precision in ["4bit"]:
|
115 |
+
return Precision.qt_4bit
|
116 |
+
if precision in ["GPTQ", "None"]:
|
117 |
+
return Precision.qt_GPTQ
|
118 |
+
return Precision.Unknown
|
119 |
+
|
120 |
+
# Column selection
|
121 |
+
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
|
122 |
+
TYPES = [c.type for c in fields(AutoEvalColumn) if not c.hidden]
|
123 |
+
|
124 |
+
EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
|
125 |
+
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
|
126 |
+
|
127 |
+
BENCHMARK_COLS = [t.value.col_name for t in Tasks]
|
128 |
+
|
129 |
+
NUMERIC_INTERVALS = {
|
130 |
+
"?": pd.Interval(-1, 0, closed="right"),
|
131 |
+
"~1.5": pd.Interval(0, 2, closed="right"),
|
132 |
+
"~3": pd.Interval(2, 4, closed="right"),
|
133 |
+
"~7": pd.Interval(4, 9, closed="right"),
|
134 |
+
"~13": pd.Interval(9, 20, closed="right"),
|
135 |
+
"~35": pd.Interval(20, 45, closed="right"),
|
136 |
+
"~60": pd.Interval(45, 70, closed="right"),
|
137 |
+
"70+": pd.Interval(70, 10000, closed="right"),
|
138 |
+
}
|
139 |
+
|
140 |
+
# Define the baselines
|
141 |
+
baseline_row = {
|
142 |
+
AutoEvalColumn.model.name: "<p>Baseline</p>",
|
143 |
+
AutoEvalColumn.revision.name: "N/A",
|
144 |
+
AutoEvalColumn.precision.name: None,
|
145 |
+
AutoEvalColumn.average.name: 92.75,
|
146 |
+
#AutoEvalColumn.merged.name: False,
|
147 |
+
AutoEvalColumn.CMMMU.name: 100,
|
148 |
+
AutoEvalColumn.MMMU.name: 100,
|
149 |
+
AutoEvalColumn.MMMU_Pro_standard.name: 100,
|
150 |
+
AutoEvalColumn.MMMU_Pro_vision.name: 100,
|
151 |
+
AutoEvalColumn.MathVision.name: 100,
|
152 |
+
AutoEvalColumn.CII_Bench.name: 100,
|
153 |
+
AutoEvalColumn.Blink.name: 100,
|
154 |
+
AutoEvalColumn.CharXiv.name: 100,
|
155 |
+
AutoEvalColumn.MathVerse.name: 100,
|
156 |
+
AutoEvalColumn.MmvetV2.name: 100,
|
157 |
+
AutoEvalColumn.Ocrlite.name: 100,
|
158 |
+
AutoEvalColumn.OcrliteZh.name: 100,
|
159 |
+
AutoEvalColumn.dummy.name: "baseline",
|
160 |
+
AutoEvalColumn.model_type.name: "",
|
161 |
+
AutoEvalColumn.flagged.name: False,
|
162 |
+
}
|
163 |
+
|
164 |
+
# Define the human baselines
|
165 |
+
human_baseline_row = {
|
166 |
+
AutoEvalColumn.model.name: "<p>Human performance</p>",
|
167 |
+
AutoEvalColumn.revision.name: "N/A",
|
168 |
+
AutoEvalColumn.precision.name: None,
|
169 |
+
AutoEvalColumn.average.name: 92.75,
|
170 |
+
#AutoEvalColumn.merged.name: False,
|
171 |
+
AutoEvalColumn.CMMMU.name: 100,
|
172 |
+
AutoEvalColumn.MMMU.name: 100,
|
173 |
+
AutoEvalColumn.MMMU_Pro_standard.name: 100,
|
174 |
+
AutoEvalColumn.MMMU_Pro_vision.name: 100,
|
175 |
+
AutoEvalColumn.MathVision.name: 100,
|
176 |
+
AutoEvalColumn.CII_Bench.name: 100,
|
177 |
+
AutoEvalColumn.Blink.name: 100,
|
178 |
+
AutoEvalColumn.CharXiv.name: 100,
|
179 |
+
AutoEvalColumn.MathVerse.name: 100,
|
180 |
+
AutoEvalColumn.MmvetV2.name: 100,
|
181 |
+
AutoEvalColumn.Ocrlite.name: 100,
|
182 |
+
AutoEvalColumn.OcrliteZh.name: 100,
|
183 |
+
AutoEvalColumn.dummy.name: "human_baseline",
|
184 |
+
AutoEvalColumn.model_type.name: "",
|
185 |
+
AutoEvalColumn.flagged.name: False,
|
186 |
+
}
|
src/envs.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
from huggingface_hub import HfApi
|
4 |
+
|
5 |
+
# Info to change for your repository
|
6 |
+
# ----------------------------------
|
7 |
+
TOKEN = os.environ.get("HF_TOKEN") # A read/write token for your org
|
8 |
+
|
9 |
+
|
10 |
+
#OWNER = "demo-leaderboard-backend" # Change to your org - don't forget to create a results and request dataset, with the correct format!
|
11 |
+
#REPO_ID = f"{OWNER}/leaderboard"
|
12 |
+
#QUEUE_REPO = f"{OWNER}/requests"
|
13 |
+
#RESULTS_REPO = f"{OWNER}/results"
|
14 |
+
#DYNAMIC_INFO_REPO = f"{OWNER}/dynamic_model_information"
|
15 |
+
|
16 |
+
REPO_ID = "BAAI/EmbodiedVerse"
|
17 |
+
QUEUE_REPO = "open-cn-llm-leaderboard/EmbodiedVerse_requests"
|
18 |
+
DYNAMIC_INFO_REPO = "open-cn-llm-leaderboard/EmbodiedVerse_dynamic_model_information"
|
19 |
+
RESULTS_REPO = "open-cn-llm-leaderboard/EmbodiedVerse_results"
|
20 |
+
|
21 |
+
IS_PUBLIC = bool(os.environ.get("IS_PUBLIC", True))
|
22 |
+
# If you setup a cache later, just change HF_HOME
|
23 |
+
CACHE_PATH=os.getenv("HF_HOME", ".")
|
24 |
+
|
25 |
+
# Local caches
|
26 |
+
EVAL_REQUESTS_PATH = os.path.join(CACHE_PATH, "eval-queue")
|
27 |
+
EVAL_RESULTS_PATH = os.path.join(CACHE_PATH, "eval-results")
|
28 |
+
EVAL_REQUESTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-queue-bk")
|
29 |
+
EVAL_RESULTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-results-bk")
|
30 |
+
DYNAMIC_INFO_PATH = os.path.join(CACHE_PATH, "dynamic-info")
|
31 |
+
DYNAMIC_INFO_FILE_PATH = os.path.join(DYNAMIC_INFO_PATH, "model_infos.json")
|
32 |
+
|
33 |
+
PATH_TO_COLLECTION = "open-cn-llm-leaderboard/flageval-vlm-leaderboard-best-models-677e51cdc44f8123e02cbda1"
|
34 |
+
|
35 |
+
# Rate limit variables
|
36 |
+
RATE_LIMIT_PERIOD = 7
|
37 |
+
RATE_LIMIT_QUOTA = 5
|
38 |
+
HAS_HIGHER_RATE_LIMIT = ["TheBloke"]
|
39 |
+
|
40 |
+
API = HfApi(token=TOKEN)
|
src/leaderboard/filter_models.py
ADDED
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from src.display.formatting import model_hyperlink
|
2 |
+
from src.display.utils import AutoEvalColumn
|
3 |
+
|
4 |
+
# Models which have been flagged by users as being problematic for a reason or another
|
5 |
+
# (Model name to forum discussion link)
|
6 |
+
FLAGGED_MODELS = {
|
7 |
+
"merged": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
|
8 |
+
"Voicelab/trurl-2-13b": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/202",
|
9 |
+
"deepnight-research/llama-2-70B-inst": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/207",
|
10 |
+
"Aspik101/trurl-2-13b-pl-instruct_unload": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/213",
|
11 |
+
"Fredithefish/ReasonixPajama-3B-HF": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/236",
|
12 |
+
"TigerResearch/tigerbot-7b-sft-v1": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/237",
|
13 |
+
"gaodrew/gaodrew-gorgonzola-13b": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/215",
|
14 |
+
"AIDC-ai-business/Marcoroni-70B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/287",
|
15 |
+
"AIDC-ai-business/Marcoroni-13B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/287",
|
16 |
+
"AIDC-ai-business/Marcoroni-7B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/287",
|
17 |
+
"fblgit/una-xaberius-34b-v1beta": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/444",
|
18 |
+
"jan-hq/trinity-v1": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
|
19 |
+
"rwitz2/go-bruins-v2.1.1": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
|
20 |
+
"rwitz2/go-bruins-v2.1": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
|
21 |
+
"GreenNode/GreenNodeLM-v3olet-7B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
|
22 |
+
"GreenNode/GreenNodeLM-7B-v4leo": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
|
23 |
+
"GreenNode/LeoScorpius-GreenNode-7B-v1": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
|
24 |
+
"viethq188/LeoScorpius-7B-Chat-DPO": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
|
25 |
+
"GreenNode/GreenNodeLM-7B-v2leo": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
|
26 |
+
"janai-hq/trinity-v1": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
|
27 |
+
"ignos/LeoScorpius-GreenNode-Alpaca-7B-v1": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
|
28 |
+
"fblgit/una-cybertron-7b-v3-OMA": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
|
29 |
+
"mncai/mistral-7b-dpo-merge-v1.1": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
|
30 |
+
"mncai/mistral-7b-dpo-v6": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
|
31 |
+
"Toten5/LeoScorpius-GreenNode-7B-v1": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
|
32 |
+
"GreenNode/GreenNodeLM-7B-v1olet": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
|
33 |
+
"quantumaikr/quantum-dpo-v0.1": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
|
34 |
+
"quantumaikr/quantum-v0.01": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
|
35 |
+
"quantumaikr/quantum-trinity-v0.1": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
|
36 |
+
"mncai/mistral-7b-dpo-v5": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
|
37 |
+
"cookinai/BruinHermes": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
|
38 |
+
"jan-ai/Pandora-10.7B-v1": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
|
39 |
+
"v1olet/v1olet_marcoroni-go-bruins-merge-7B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
|
40 |
+
"v1olet/v1olet_merged_dpo_7B_v3": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
|
41 |
+
"rwitz2/pee": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
|
42 |
+
"zyh3826 / GML-Mistral-merged-v1": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/503",
|
43 |
+
"dillfrescott/trinity-medium": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474",
|
44 |
+
"udkai/Garrulus": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/526",
|
45 |
+
"dfurman/GarrulusMarcoro-7B-v0.1": "https://huggingface.co/dfurman/GarrulusMarcoro-7B-v0.1/discussions/1",
|
46 |
+
"udkai/Turdus": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/548",
|
47 |
+
"eren23/slerp-test-turdus-beagle": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/548",
|
48 |
+
"abideen/NexoNimbus-7B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/548",
|
49 |
+
"alnrg2arg/test2_3": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/548",
|
50 |
+
"nfaheem/Marcoroni-7b-DPO-Merge": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/548",
|
51 |
+
"CultriX/MergeTrix-7B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/548",
|
52 |
+
"liminerity/Blur-7b-v1.21": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/548",
|
53 |
+
# Merges not indicated
|
54 |
+
"gagan3012/MetaModelv2": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
|
55 |
+
"gagan3012/MetaModelv3": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
|
56 |
+
"kyujinpy/Sakura-SOLRCA-Math-Instruct-DPO-v2": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
|
57 |
+
"kyujinpy/Sakura-SOLAR-Instruct-DPO-v2": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
|
58 |
+
"kyujinpy/Sakura-SOLRCA-Math-Instruct-DPO-v1": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
|
59 |
+
"kyujinpy/Sakura-SOLRCA-Instruct-DPO": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
|
60 |
+
"fblgit/LUNA-SOLARkrautLM-Instruct": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
|
61 |
+
"perlthoughts/Marcoroni-8x7B-v3-MoE": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
|
62 |
+
"rwitz/go-bruins-v2": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
|
63 |
+
"rwitz/go-bruins": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
|
64 |
+
"Walmart-the-bag/Solar-10.7B-Cato": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
|
65 |
+
"aqweteddy/mistral_tv-neural-marconroni": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
|
66 |
+
"NExtNewChattingAI/shark_tank_ai_7_b": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
|
67 |
+
"Q-bert/MetaMath-Cybertron": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
|
68 |
+
"OpenPipe/mistral-ft-optimized-1227": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
|
69 |
+
"perlthoughts/Falkor-7b": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
|
70 |
+
"v1olet/v1olet_merged_dpo_7B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
|
71 |
+
"Ba2han/BruinsV2-OpHermesNeu-11B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
|
72 |
+
"DopeorNope/You_can_cry_Snowman-13B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
|
73 |
+
"PistachioAlt/Synatra-MCS-7B-v0.3-RP-Slerp": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
|
74 |
+
"Weyaxi/MetaMath-una-cybertron-v2-bf16-Ties": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
|
75 |
+
"Weyaxi/OpenHermes-2.5-neural-chat-7b-v3-2-7B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
|
76 |
+
"perlthoughts/Falkor-8x7B-MoE": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
|
77 |
+
"elinas/chronos007-70b": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
|
78 |
+
"Weyaxi/MetaMath-NeuralHermes-2.5-Mistral-7B-Linear": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
|
79 |
+
"Weyaxi/MetaMath-neural-chat-7b-v3-2-Ties": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
|
80 |
+
"diffnamehard/Mistral-CatMacaroni-slerp-uncensored-7B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
|
81 |
+
"Weyaxi/neural-chat-7b-v3-1-OpenHermes-2.5-7B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
|
82 |
+
"Weyaxi/MetaMath-NeuralHermes-2.5-Mistral-7B-Ties": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
|
83 |
+
"Walmart-the-bag/Misted-7B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
|
84 |
+
"garage-bAInd/Camel-Platypus2-70B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
|
85 |
+
"Weyaxi/OpenOrca-Zephyr-7B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
|
86 |
+
"uukuguy/speechless-mistral-7b-dare-0.85": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/510",
|
87 |
+
"DopeorNope/SOLARC-M-10.7B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/511",
|
88 |
+
"cloudyu/Mixtral_11Bx2_MoE_19B": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/511",
|
89 |
+
"DopeorNope/SOLARC-MOE-10.7Bx6 ": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/511",
|
90 |
+
"DopeorNope/SOLARC-MOE-10.7Bx4": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/511",
|
91 |
+
"gagan3012/MetaModelv2 ": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/511",
|
92 |
+
}
|
93 |
+
|
94 |
+
# Models which have been requested by orgs to not be submitted on the leaderboard
|
95 |
+
DO_NOT_SUBMIT_MODELS = [
|
96 |
+
"Voicelab/trurl-2-13b", # trained on MMLU
|
97 |
+
"TigerResearch/tigerbot-70b-chat", # per authors request
|
98 |
+
"TigerResearch/tigerbot-70b-chat-v2", # per authors request
|
99 |
+
"TigerResearch/tigerbot-70b-chat-v4-4k", # per authors request
|
100 |
+
]
|
101 |
+
|
102 |
+
|
103 |
+
def flag_models(leaderboard_data: list[dict]):
|
104 |
+
for model_data in leaderboard_data:
|
105 |
+
# Merges and moes are flagged automatically
|
106 |
+
if model_data[AutoEvalColumn.flagged.name] == True:
|
107 |
+
flag_key = "merged"
|
108 |
+
else:
|
109 |
+
flag_key = model_data["model_name_for_query"]
|
110 |
+
|
111 |
+
if flag_key in FLAGGED_MODELS:
|
112 |
+
issue_num = FLAGGED_MODELS[flag_key].split("/")[-1]
|
113 |
+
issue_link = model_hyperlink(
|
114 |
+
FLAGGED_MODELS[flag_key],
|
115 |
+
f"See discussion #{issue_num}",
|
116 |
+
)
|
117 |
+
model_data[
|
118 |
+
AutoEvalColumn.model.name
|
119 |
+
] = f"{model_data[AutoEvalColumn.model.name]} has been flagged! {issue_link}"
|
120 |
+
model_data[AutoEvalColumn.flagged.name] = True
|
121 |
+
else:
|
122 |
+
model_data[AutoEvalColumn.flagged.name] = False
|
123 |
+
|
124 |
+
|
125 |
+
def remove_forbidden_models(leaderboard_data: list[dict]):
|
126 |
+
indices_to_remove = []
|
127 |
+
for ix, model in enumerate(leaderboard_data):
|
128 |
+
if model["model_name_for_query"] in DO_NOT_SUBMIT_MODELS:
|
129 |
+
indices_to_remove.append(ix)
|
130 |
+
|
131 |
+
for ix in reversed(indices_to_remove):
|
132 |
+
leaderboard_data.pop(ix)
|
133 |
+
return leaderboard_data
|
134 |
+
|
135 |
+
|
136 |
+
def filter_models_flags(leaderboard_data: list[dict]):
|
137 |
+
leaderboard_data = remove_forbidden_models(leaderboard_data)
|
138 |
+
flag_models(leaderboard_data)
|
src/leaderboard/read_evals.py
ADDED
@@ -0,0 +1,237 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import glob
|
2 |
+
import json
|
3 |
+
import math
|
4 |
+
import os
|
5 |
+
from dataclasses import dataclass
|
6 |
+
|
7 |
+
import dateutil
|
8 |
+
import numpy as np
|
9 |
+
|
10 |
+
from src.display.formatting import make_clickable_model
|
11 |
+
from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision, WeightType
|
12 |
+
from src.submission.check_validity import is_model_on_hub
|
13 |
+
|
14 |
+
|
15 |
+
@dataclass
|
16 |
+
class EvalResult:
|
17 |
+
"""Represents one full evaluation. Built from a combination of the result and request file for a given run.
|
18 |
+
"""
|
19 |
+
eval_name: str # org_model_precision (uid)
|
20 |
+
full_model: str # org/model (path on hub)
|
21 |
+
org: str
|
22 |
+
model: str
|
23 |
+
revision: str # commit hash, "" if main
|
24 |
+
results: dict
|
25 |
+
precision: Precision = Precision.Unknown
|
26 |
+
model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
|
27 |
+
weight_type: WeightType = WeightType.Original # Original or Adapter
|
28 |
+
architecture: str = "Unknown"
|
29 |
+
license: str = "?"
|
30 |
+
likes: int = 0
|
31 |
+
num_params: int = 0
|
32 |
+
date: str = "" # submission date of request file
|
33 |
+
still_on_hub: bool = False
|
34 |
+
is_merge: bool = False
|
35 |
+
flagged: bool = False
|
36 |
+
status: str = "FINISHED"
|
37 |
+
tags: list = None
|
38 |
+
|
39 |
+
@classmethod
|
40 |
+
def init_from_json_file(self, json_filepath):
|
41 |
+
"""Inits the result from the specific model result file"""
|
42 |
+
with open(json_filepath) as fp:
|
43 |
+
data = json.load(fp)
|
44 |
+
|
45 |
+
config = data.get("config_general")
|
46 |
+
|
47 |
+
# Precision
|
48 |
+
precision = Precision.from_str(config.get("model_dtype"))
|
49 |
+
|
50 |
+
# Get model and org
|
51 |
+
org_and_model = config.get("model_name")#, config.get("model_args", None))
|
52 |
+
org_and_model = org_and_model.split("/", 1)
|
53 |
+
|
54 |
+
if len(org_and_model) == 1:
|
55 |
+
org = None
|
56 |
+
model = org_and_model[0]
|
57 |
+
result_key = f"{model}_{precision.value.name}"
|
58 |
+
else:
|
59 |
+
org = org_and_model[0]
|
60 |
+
model = org_and_model[1]
|
61 |
+
result_key = f"{org}_{model}_{precision.value.name}"
|
62 |
+
full_model = "/".join(org_and_model)
|
63 |
+
|
64 |
+
still_on_hub, _, model_config = is_model_on_hub(
|
65 |
+
full_model, config.get("model_sha", "main"), trust_remote_code=True, test_tokenizer=False
|
66 |
+
)
|
67 |
+
architecture = "?"
|
68 |
+
if model_config is not None:
|
69 |
+
architectures = getattr(model_config, "architectures", None)
|
70 |
+
if architectures:
|
71 |
+
architecture = ";".join(architectures)
|
72 |
+
|
73 |
+
# Extract results available in this file (some results are split in several files)
|
74 |
+
results = {}
|
75 |
+
for task in Tasks:
|
76 |
+
task = task.value
|
77 |
+
|
78 |
+
# We average all scores of a given metric (not all metrics are present in all files)
|
79 |
+
accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if task.benchmark == k])
|
80 |
+
if accs.size == 0 or any([acc is None for acc in accs]):
|
81 |
+
continue
|
82 |
+
|
83 |
+
mean_acc = np.mean(accs) if len(accs) > 0 else 0
|
84 |
+
results[task.benchmark] = mean_acc
|
85 |
+
|
86 |
+
return self(
|
87 |
+
eval_name=result_key,
|
88 |
+
full_model=full_model,
|
89 |
+
org=org,
|
90 |
+
model=model,
|
91 |
+
results=results,
|
92 |
+
precision=precision,
|
93 |
+
revision= config.get("model_sha", ""),
|
94 |
+
still_on_hub=still_on_hub,
|
95 |
+
architecture=architecture
|
96 |
+
)
|
97 |
+
|
98 |
+
def update_with_request_file(self, requests_path):
|
99 |
+
"""Finds the relevant request file for the current model and updates info with it"""
|
100 |
+
request_file = get_request_file_for_model(requests_path, self.full_model, self.precision.value.name)
|
101 |
+
|
102 |
+
try:
|
103 |
+
with open(request_file, "r") as f:
|
104 |
+
request = json.load(f)
|
105 |
+
self.model_type = ModelType.from_str(request.get("model_type", ""))
|
106 |
+
self.weight_type = WeightType[request.get("weight_type", "Original")]
|
107 |
+
self.license = request.get("license", "?")
|
108 |
+
self.likes = request.get("likes", 0)
|
109 |
+
self.num_params = request.get("params", 0)
|
110 |
+
self.date = request.get("submitted_time", "")
|
111 |
+
self.architecture = request.get("architectures", "Unknown")
|
112 |
+
self.status = request.get("status", "FAILED")
|
113 |
+
except Exception:
|
114 |
+
self.status = "FAILED"
|
115 |
+
print(f"Could not find request file for {self.org}/{self.model} with precision {self.precision.value.name}")
|
116 |
+
|
117 |
+
def update_with_dynamic_file_dict(self, file_dict):
|
118 |
+
self.license = file_dict.get("license", "?")
|
119 |
+
self.likes = file_dict.get("likes", 0)
|
120 |
+
self.still_on_hub = file_dict["still_on_hub"]
|
121 |
+
self.flagged = any("flagged" in tag for tag in file_dict["tags"])
|
122 |
+
self.tags = file_dict["tags"]
|
123 |
+
|
124 |
+
def to_dict(self):
|
125 |
+
"""Converts the Eval Result to a dict compatible with our dataframe display"""
|
126 |
+
average = 0
|
127 |
+
nums = 0
|
128 |
+
for v in self.results.values():
|
129 |
+
if v is not None and v != 0:
|
130 |
+
average += v
|
131 |
+
nums += 1
|
132 |
+
if nums ==0:
|
133 |
+
average = 0
|
134 |
+
else:
|
135 |
+
average = average/nums
|
136 |
+
|
137 |
+
data_dict = {
|
138 |
+
"eval_name": self.eval_name, # not a column, just a save name,
|
139 |
+
AutoEvalColumn.precision.name: self.precision.value.name,
|
140 |
+
AutoEvalColumn.model_type.name: self.model_type.value.name,
|
141 |
+
AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
|
142 |
+
AutoEvalColumn.weight_type.name: self.weight_type.value.name,
|
143 |
+
#AutoEvalColumn.architecture.name: self.architecture,
|
144 |
+
AutoEvalColumn.model.name: make_clickable_model(self.full_model),
|
145 |
+
AutoEvalColumn.dummy.name: self.full_model,
|
146 |
+
AutoEvalColumn.revision.name: self.revision,
|
147 |
+
AutoEvalColumn.average.name: average,
|
148 |
+
|
149 |
+
#AutoEvalColumn.license.name: self.license,
|
150 |
+
#AutoEvalColumn.likes.name: self.likes,
|
151 |
+
AutoEvalColumn.params.name: self.num_params,
|
152 |
+
#AutoEvalColumn.still_on_hub.name: self.still_on_hub,
|
153 |
+
#AutoEvalColumn.merged.name: "merge" in self.tags if self.tags else False,
|
154 |
+
AutoEvalColumn.moe.name: ("moe" in self.tags if self.tags else False) or "moe" in self.full_model.lower(),
|
155 |
+
AutoEvalColumn.flagged.name: self.flagged
|
156 |
+
}
|
157 |
+
|
158 |
+
for task in Tasks:
|
159 |
+
#data_dict[task.value.col_name] = self.results.get(task.value.benchmark, 0)
|
160 |
+
if task.value.col_name != "CLCC-H":
|
161 |
+
data_dict[task.value.col_name] = self.results.get(task.value.benchmark, 0)
|
162 |
+
else:
|
163 |
+
if self.results.get(task.value.benchmark, 0) == 0:
|
164 |
+
data_dict[task.value.col_name] = "-"
|
165 |
+
else:
|
166 |
+
data_dict[task.value.col_name] = "%.2f" % self.results.get(task.value.benchmark, 0)
|
167 |
+
|
168 |
+
return data_dict
|
169 |
+
|
170 |
+
def get_request_file_for_model(requests_path, model_name, precision):
|
171 |
+
"""Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
|
172 |
+
request_files = os.path.join(
|
173 |
+
requests_path,
|
174 |
+
f"{model_name}_eval_request_*.json",
|
175 |
+
)
|
176 |
+
request_files = glob.glob(request_files)
|
177 |
+
|
178 |
+
# Select correct request file (precision)
|
179 |
+
request_file = ""
|
180 |
+
request_files = sorted(request_files, reverse=True)
|
181 |
+
for tmp_request_file in request_files:
|
182 |
+
with open(tmp_request_file, "r") as f:
|
183 |
+
req_content = json.load(f)
|
184 |
+
if (
|
185 |
+
req_content["status"] in ["FINISHED"]
|
186 |
+
and req_content["precision"] == precision.split(".")[-1]
|
187 |
+
):
|
188 |
+
request_file = tmp_request_file
|
189 |
+
return request_file
|
190 |
+
|
191 |
+
|
192 |
+
def get_raw_eval_results(results_path: str, requests_path: str, dynamic_path: str) -> list[EvalResult]:
|
193 |
+
"""From the path of the results folder root, extract all needed info for results"""
|
194 |
+
model_result_filepaths = []
|
195 |
+
|
196 |
+
for root, _, files in os.walk(results_path):
|
197 |
+
# We should only have json files in model results
|
198 |
+
if len(files) == 0 or any([not f.endswith(".json") for f in files]):
|
199 |
+
continue
|
200 |
+
|
201 |
+
# Sort the files by date
|
202 |
+
try:
|
203 |
+
files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7])
|
204 |
+
except dateutil.parser._parser.ParserError:
|
205 |
+
files = [files[-1]]
|
206 |
+
|
207 |
+
for file in files:
|
208 |
+
model_result_filepaths.append(os.path.join(root, file))
|
209 |
+
try:
|
210 |
+
with open(dynamic_path) as f:
|
211 |
+
dynamic_data = json.load(f)
|
212 |
+
except:
|
213 |
+
dynamic_data ={}
|
214 |
+
eval_results = {}
|
215 |
+
for model_result_filepath in model_result_filepaths:
|
216 |
+
# Creation of result
|
217 |
+
eval_result = EvalResult.init_from_json_file(model_result_filepath)
|
218 |
+
eval_result.update_with_request_file(requests_path)
|
219 |
+
if eval_result.full_model in dynamic_data:
|
220 |
+
eval_result.update_with_dynamic_file_dict(dynamic_data[eval_result.full_model])
|
221 |
+
|
222 |
+
# Store results of same eval together
|
223 |
+
eval_name = eval_result.eval_name
|
224 |
+
if eval_name in eval_results.keys():
|
225 |
+
eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
|
226 |
+
else:
|
227 |
+
eval_results[eval_name] = eval_result
|
228 |
+
|
229 |
+
results = []
|
230 |
+
for v in eval_results.values():
|
231 |
+
try:
|
232 |
+
v.to_dict() # we test if the dict version is complete
|
233 |
+
results.append(v)
|
234 |
+
except KeyError: # not all eval values present
|
235 |
+
continue
|
236 |
+
|
237 |
+
return results
|
src/populate.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
|
4 |
+
import pandas as pd
|
5 |
+
|
6 |
+
from src.display.formatting import has_no_nan_values, make_clickable_model
|
7 |
+
from src.display.utils import AutoEvalColumn, EvalQueueColumn, baseline_row
|
8 |
+
from src.leaderboard.read_evals import get_raw_eval_results
|
9 |
+
from src.leaderboard.filter_models import filter_models_flags
|
10 |
+
|
11 |
+
|
12 |
+
def get_leaderboard_df(results_path: str, requests_path: str, dynamic_path: str,cols: list, benchmark_cols: list) -> pd.DataFrame:
|
13 |
+
"""Creates a dataframe from all the individual experiment results"""
|
14 |
+
raw_data = get_raw_eval_results(results_path, requests_path, dynamic_path)
|
15 |
+
all_data_json = [v.to_dict() for v in raw_data]
|
16 |
+
all_data_json.append(baseline_row)
|
17 |
+
filter_models_flags(all_data_json)
|
18 |
+
|
19 |
+
df = pd.DataFrame.from_records(all_data_json)
|
20 |
+
df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
|
21 |
+
df = df[cols].round(decimals=2)
|
22 |
+
|
23 |
+
# filter out if any of the benchmarks have not been produced
|
24 |
+
df = df[has_no_nan_values(df, benchmark_cols)]
|
25 |
+
return raw_data, df
|
26 |
+
|
27 |
+
|
28 |
+
def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
|
29 |
+
"""Creates the different dataframes for the evaluation queues requestes"""
|
30 |
+
entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")]
|
31 |
+
all_evals = []
|
32 |
+
for entry in entries:
|
33 |
+
if ".json" in entry:
|
34 |
+
file_path = os.path.join(save_path, entry)
|
35 |
+
with open(file_path) as fp:
|
36 |
+
data = json.load(fp)
|
37 |
+
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
|
38 |
+
data[EvalQueueColumn.revision.name] = data.get("revision", "main")
|
39 |
+
|
40 |
+
all_evals.append(data)
|
41 |
+
elif ".md" not in entry:
|
42 |
+
# this is a folder
|
43 |
+
sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if not e.startswith(".")]
|
44 |
+
for sub_entry in sub_entries:
|
45 |
+
file_path = os.path.join(save_path, entry, sub_entry)
|
46 |
+
with open(file_path) as fp:
|
47 |
+
data = json.load(fp)
|
48 |
+
|
49 |
+
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
|
50 |
+
data[EvalQueueColumn.revision.name] = data.get("revision", "main")
|
51 |
+
all_evals.append(data)
|
52 |
+
pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]]
|
53 |
+
running_list = [e for e in all_evals if e["status"] == "RUNNING"]
|
54 |
+
finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"]
|
55 |
+
df_pending = pd.DataFrame.from_records(pending_list, columns=cols)
|
56 |
+
df_running = pd.DataFrame.from_records(running_list, columns=cols)
|
57 |
+
df_finished = pd.DataFrame.from_records(finished_list, columns=cols)
|
58 |
+
return df_finished[cols], df_running[cols], df_pending[cols]
|
src/scripts/check_request.py
ADDED
@@ -0,0 +1,404 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
import io
|
4 |
+
from datetime import datetime, timezone
|
5 |
+
import hmac
|
6 |
+
import hashlib
|
7 |
+
import time
|
8 |
+
import requests
|
9 |
+
import pandas as pd
|
10 |
+
|
11 |
+
from colorama import Fore
|
12 |
+
from huggingface_hub import HfApi, snapshot_download
|
13 |
+
import os
|
14 |
+
import sys
|
15 |
+
|
16 |
+
|
17 |
+
current_script_path = os.path.abspath(__file__)
|
18 |
+
src_directory = os.path.join(os.path.dirname(current_script_path), '..', '..')
|
19 |
+
sys.path.append(src_directory)
|
20 |
+
|
21 |
+
# print(sys.path)
|
22 |
+
from src.display.utils import EVAL_COLS,BENCHMARK_COLS,COLS
|
23 |
+
from src.envs import API, EVAL_REQUESTS_PATH, DYNAMIC_INFO_REPO, DYNAMIC_INFO_FILE_PATH, DYNAMIC_INFO_PATH, EVAL_RESULTS_PATH, TOKEN, IS_PUBLIC, QUEUE_REPO, REPO_ID, RESULTS_REPO
|
24 |
+
|
25 |
+
|
26 |
+
|
27 |
+
status_mapping = {
|
28 |
+
'P': 'PENDING',
|
29 |
+
'R': 'RUNNING',
|
30 |
+
'S': 'FINISHED',
|
31 |
+
'F': 'FAILED',
|
32 |
+
'C': 'CANCELLED'
|
33 |
+
}
|
34 |
+
|
35 |
+
dataset_metric_mapping = {
|
36 |
+
'ChartQA': ('accuracy','acc'),
|
37 |
+
'CMMMU': ('accuracy','acc'),
|
38 |
+
'CMMU': ('accuracy','acc'),
|
39 |
+
'MMMU': ('accuracy','acc'),
|
40 |
+
'MMMU_Pro_standard': ('accuracy','acc'),
|
41 |
+
'MMMU_Pro_vision': ('accuracy','acc'),
|
42 |
+
'OCRBench': ('accuracy','acc'),
|
43 |
+
'MathVision': ('accuracy','acc'),
|
44 |
+
'CII-Bench': ('accuracy','acc'),
|
45 |
+
'Blink': ('accuracy','acc'),
|
46 |
+
}
|
47 |
+
|
48 |
+
|
49 |
+
failed_mapping = {}
|
50 |
+
# Example usage
|
51 |
+
# 生产环境
|
52 |
+
#base_url = 'https://flageval.baai.ac.cn/api/hf'
|
53 |
+
#secret = b'M2L84t36MdzwS1Lb'
|
54 |
+
# 测试环境
|
55 |
+
base_url = 'http://120.92.17.239:8080/api/hf'
|
56 |
+
secret = b'Dn29TMCxzvKBGMS8'
|
57 |
+
# model_id = 'Qwen/Qwen1.5-0.5B'
|
58 |
+
|
59 |
+
MAX_GPU_USAGE = 20
|
60 |
+
LC_A800_QUEUE_ID = "877467e6-808b-487e-8a06-af8e96c83fa6"
|
61 |
+
A800_QUEUE_ID = "f016ff98-6ec8-4b1e-aed2-9a93753119b2"
|
62 |
+
A100_QUEUE_ID = "7f8cb309-295f-4f56-8159-f43f60f03f9c"
|
63 |
+
MAX_A800_UASGE = 1
|
64 |
+
|
65 |
+
def get_gpu_number(params=0):
|
66 |
+
# 参数量除以 30 再向上取整,就算 params为0,最小为1
|
67 |
+
# return -(-params // 35)
|
68 |
+
# return -(-params // 35)
|
69 |
+
# return -(-params // 35)
|
70 |
+
if params == 0:
|
71 |
+
return 0, A100_QUEUE_ID
|
72 |
+
if params < 9:
|
73 |
+
return 1, A100_QUEUE_ID
|
74 |
+
if params < 15:
|
75 |
+
return 2, A100_QUEUE_ID
|
76 |
+
elif params < 35:
|
77 |
+
return 4, A100_QUEUE_ID
|
78 |
+
elif params < 70:
|
79 |
+
return 3, LC_A800_QUEUE_ID
|
80 |
+
elif params < 100:
|
81 |
+
return 5, LC_A800_QUEUE_ID
|
82 |
+
elif params < 140:
|
83 |
+
return 6, LC_A800_QUEUE_ID
|
84 |
+
else:
|
85 |
+
return 8, LC_A800_QUEUE_ID
|
86 |
+
|
87 |
+
def generate_signature(secret, url, body):
|
88 |
+
timestamp = str(int(time.time()))
|
89 |
+
to_sign = f'{timestamp}{url}{body}'
|
90 |
+
h = hmac.new(secret, to_sign.encode('utf-8'), digestmod=hashlib.sha256)
|
91 |
+
sign = h.hexdigest()
|
92 |
+
return sign, timestamp
|
93 |
+
|
94 |
+
def submit_evaluation(base_url, secret, model_id, require_gpus=None, priority=None, gpus_queue_id=None, hf_user_id=None):
|
95 |
+
url = f'{base_url}/mm/batches'
|
96 |
+
data = {'modelId': model_id}
|
97 |
+
if require_gpus is not None:
|
98 |
+
data['requireGpus'] = require_gpus
|
99 |
+
if priority is not None:
|
100 |
+
data['priority'] = priority
|
101 |
+
if gpus_queue_id is not None:
|
102 |
+
data['gpus_queue_id'] = gpus_queue_id
|
103 |
+
if hf_user_id is not None:
|
104 |
+
data['hfUserId'] = hf_user_id
|
105 |
+
|
106 |
+
raw_body = json.dumps(data)
|
107 |
+
sign, timestamp = generate_signature(secret, url, raw_body)
|
108 |
+
|
109 |
+
headers = {
|
110 |
+
'Content-Type': 'application/json',
|
111 |
+
'X-Flageval-Sign': sign,
|
112 |
+
'X-Flageval-Timestamp': timestamp,
|
113 |
+
}
|
114 |
+
|
115 |
+
response = requests.post(url, data=raw_body, headers=headers)
|
116 |
+
print("submit_evaluation response",response)
|
117 |
+
response_data = response.json()
|
118 |
+
|
119 |
+
evaluation_info = {
|
120 |
+
'evaluationId': response_data.get('evaluationId'),
|
121 |
+
'eval_id': response_data.get('id')
|
122 |
+
}
|
123 |
+
return evaluation_info
|
124 |
+
|
125 |
+
def poll_evaluation_progress(base_url, secret, batch_id):
|
126 |
+
url = f'{base_url}/mm/batches/{int(batch_id)}'
|
127 |
+
sign, timestamp = generate_signature(secret, url, '')
|
128 |
+
|
129 |
+
headers = {
|
130 |
+
'X-Flageval-Sign': sign,
|
131 |
+
'X-Flageval-Timestamp': timestamp,
|
132 |
+
}
|
133 |
+
|
134 |
+
try:
|
135 |
+
response = requests.get(url, headers=headers)
|
136 |
+
response.raise_for_status() # 如果响应状态不是200,将引发HTTPError异常
|
137 |
+
|
138 |
+
response_data = response.json()
|
139 |
+
|
140 |
+
evaluation_progress = {
|
141 |
+
'evaluationId': response_data.get('evaluationId'),
|
142 |
+
'eval_id': response_data.get('batchId'),
|
143 |
+
'status': response_data.get('status'),
|
144 |
+
'details': response_data.get('details', [])
|
145 |
+
}
|
146 |
+
return evaluation_progress
|
147 |
+
|
148 |
+
except requests.exceptions.RequestException as e:
|
149 |
+
print(f"请求错误: {e}")
|
150 |
+
except ValueError:
|
151 |
+
print(f"解析JSON时出错:{response}")
|
152 |
+
except Exception as e:
|
153 |
+
print(f"未知错误: {e}")
|
154 |
+
|
155 |
+
return {'status': '未执行成功'}
|
156 |
+
|
157 |
+
def update_gpu_usage(change):
|
158 |
+
global current_gpu_usage
|
159 |
+
current_gpu_usage += change
|
160 |
+
|
161 |
+
def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
|
162 |
+
all_evals = []
|
163 |
+
|
164 |
+
for root, dirs, files in os.walk(save_path):
|
165 |
+
for file in files:
|
166 |
+
if file.endswith(".json"):
|
167 |
+
file_path = os.path.join(root, file)
|
168 |
+
with open(file_path) as fp:
|
169 |
+
data = json.load(fp)
|
170 |
+
# 确保所有列都存在,不存在的列初始化为 None
|
171 |
+
for col in cols:
|
172 |
+
if col not in data:
|
173 |
+
if col == "failed_status":
|
174 |
+
data[col] = 0
|
175 |
+
else:
|
176 |
+
data[col] = None
|
177 |
+
|
178 |
+
all_evals.append(data)
|
179 |
+
# all_eval order by submited_time
|
180 |
+
all_evals = sorted(all_evals, key=lambda x: x['submitted_time'])
|
181 |
+
|
182 |
+
pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]]
|
183 |
+
pending_list = sorted(pending_list, key=lambda x: x['params'])
|
184 |
+
pending_list = sorted(pending_list, key=lambda x: x['failed_status'])
|
185 |
+
running_list = [e for e in all_evals if e["status"] == "RUNNING"]
|
186 |
+
finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"]
|
187 |
+
|
188 |
+
df_pending = pd.DataFrame(pending_list) if pending_list else pd.DataFrame(columns=cols)
|
189 |
+
df_running = pd.DataFrame(running_list) if running_list else pd.DataFrame(columns=cols)
|
190 |
+
df_finished = pd.DataFrame(finished_list) if finished_list else pd.DataFrame(columns=cols)
|
191 |
+
|
192 |
+
return df_finished[cols], df_running[cols], df_pending[cols]
|
193 |
+
|
194 |
+
def update_evaluation_queue(model_name, nstatus, eval_id=None, flageval_id=None):
|
195 |
+
print("update_evaluation_queue", model_name, nstatus, eval_id)
|
196 |
+
fail_status = -1
|
197 |
+
if len(nstatus.split("_")) == 2:
|
198 |
+
status, fail_status = nstatus.split("_")[0], int(nstatus.split("_")[1])
|
199 |
+
else:
|
200 |
+
status = nstatus
|
201 |
+
user_name, model_path = model_name.split("/") if "/" in model_name else ("", model_name)
|
202 |
+
out_dir = f"{EVAL_REQUESTS_PATH}/{user_name}"
|
203 |
+
json_files = [f for f in os.listdir(out_dir) if f.startswith(model_path + '_') and f.endswith(".json")]
|
204 |
+
|
205 |
+
if not json_files:
|
206 |
+
print(f"No JSON file found for model {model_name}")
|
207 |
+
return
|
208 |
+
|
209 |
+
for json_file in json_files:
|
210 |
+
json_path = os.path.join(out_dir, json_file)
|
211 |
+
with open(json_path, "r") as f:
|
212 |
+
eval_entry = json.load(f)
|
213 |
+
|
214 |
+
print("befor update_evaluation_queue", eval_entry['status'], eval_entry['failed_status'])
|
215 |
+
eval_entry['status'] = status
|
216 |
+
if fail_status >=0:
|
217 |
+
eval_entry['failed_status'] = fail_status
|
218 |
+
if eval_id is not None:
|
219 |
+
eval_entry['eval_id'] = eval_id
|
220 |
+
if flageval_id is not None:
|
221 |
+
eval_entry['flageval_id'] = flageval_id
|
222 |
+
print("after update_evaluation_queue status change", eval_entry['status'], eval_entry['failed_status'])
|
223 |
+
with open(json_path, "w") as f:
|
224 |
+
# f.write(json.dumps(eval_entry))
|
225 |
+
json.dump(eval_entry, f, indent=4)
|
226 |
+
|
227 |
+
api.upload_file(
|
228 |
+
path_or_fileobj=json_path,
|
229 |
+
path_in_repo=json_path.split(f"{EVAL_REQUESTS_PATH}/")[1],
|
230 |
+
repo_id=QUEUE_REPO,
|
231 |
+
repo_type="dataset",
|
232 |
+
commit_message=f"Update {model_name} status to {status}",
|
233 |
+
)
|
234 |
+
|
235 |
+
def save_and_upload_results(model_name, details):
|
236 |
+
converted_details = {
|
237 |
+
"config_general": {
|
238 |
+
"model_name": model_name,
|
239 |
+
"model_dtype": "float16",
|
240 |
+
"model_size": 0
|
241 |
+
},
|
242 |
+
"results": {},
|
243 |
+
"versions": {},
|
244 |
+
"config_tasks": {},
|
245 |
+
"summary_tasks": {},
|
246 |
+
"summary_general": {}
|
247 |
+
}
|
248 |
+
for detail in details:
|
249 |
+
dataset = detail['dataset']
|
250 |
+
status = detail['status']
|
251 |
+
# accuracy = detail['accuracy']
|
252 |
+
if status == 'S' and dataset in dataset_metric_mapping.keys():
|
253 |
+
# dataset_key = f"harness|{dataset}|5"
|
254 |
+
acc_key = dataset_metric_mapping[dataset][0]
|
255 |
+
acc = detail['accuracy'] if acc_key == 'accuracy' else detail['rawDetails'][acc_key]
|
256 |
+
converted_details['results'][dataset] = {
|
257 |
+
dataset_metric_mapping[dataset][1]: acc,
|
258 |
+
"acc_stderr": 0
|
259 |
+
}
|
260 |
+
# 添加详细信息
|
261 |
+
for metric, value in detail['rawDetails'].items():
|
262 |
+
converted_details['results'][dataset][metric] = value
|
263 |
+
|
264 |
+
out_dir = f"{EVAL_RESULTS_PATH}/{model_name}"
|
265 |
+
os.makedirs(out_dir, exist_ok=True)
|
266 |
+
result_path = os.path.join(out_dir, f"results_{datetime.now().strftime('%Y-%m-%dT%H-%M-%S.%f')}.json")
|
267 |
+
|
268 |
+
with open(result_path, "w") as f:
|
269 |
+
json.dump(converted_details, f, indent=4)
|
270 |
+
|
271 |
+
api.upload_file(
|
272 |
+
path_or_fileobj=result_path,
|
273 |
+
path_in_repo=result_path.split(f"{EVAL_RESULTS_PATH}/")[1],
|
274 |
+
repo_id=RESULTS_REPO,
|
275 |
+
repo_type="dataset",
|
276 |
+
commit_message=f"Add results for {model_name}",
|
277 |
+
)
|
278 |
+
|
279 |
+
from tqdm.auto import tqdm
|
280 |
+
import io
|
281 |
+
|
282 |
+
class SilentTqdm(tqdm):
|
283 |
+
def __init__(self, *args, **kwargs):
|
284 |
+
kwargs['bar_format'] = ''
|
285 |
+
kwargs['leave'] = False
|
286 |
+
super().__init__(*args, **kwargs, file=io.StringIO())
|
287 |
+
|
288 |
+
def update(self, n=1):
|
289 |
+
pass
|
290 |
+
|
291 |
+
def close(self):
|
292 |
+
pass
|
293 |
+
|
294 |
+
|
295 |
+
def snapshot_download_with_retry(max_retries, wait_time, *args, **kwargs):
|
296 |
+
for i in range(max_retries):
|
297 |
+
try:
|
298 |
+
return snapshot_download(*args, **kwargs)
|
299 |
+
except Exception as e:
|
300 |
+
if i < max_retries - 1: # i is zero indexed
|
301 |
+
print(f"Error occurred: {e}. Retrying in {wait_time} seconds...")
|
302 |
+
time.sleep(wait_time)
|
303 |
+
else:
|
304 |
+
print("Max retries reached. Raising exception.")
|
305 |
+
raise
|
306 |
+
|
307 |
+
|
308 |
+
api = HfApi()
|
309 |
+
|
310 |
+
print(EVAL_REQUESTS_PATH)
|
311 |
+
print(DYNAMIC_INFO_PATH)
|
312 |
+
print(EVAL_RESULTS_PATH)
|
313 |
+
|
314 |
+
prev_running_models = ''
|
315 |
+
|
316 |
+
while True:
|
317 |
+
|
318 |
+
snapshot_download_with_retry(5, 10, repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=SilentTqdm, etag_timeout=30)
|
319 |
+
snapshot_download_with_retry(5, 10, repo_id=DYNAMIC_INFO_REPO, local_dir=DYNAMIC_INFO_PATH, repo_type="dataset", tqdm_class=SilentTqdm, etag_timeout=30)
|
320 |
+
snapshot_download_with_retry(5, 10, repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=SilentTqdm, etag_timeout=30)
|
321 |
+
|
322 |
+
(
|
323 |
+
finished_eval_queue_df,
|
324 |
+
running_eval_queue_df,
|
325 |
+
pending_eval_queue_df,
|
326 |
+
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, ['model','status','params','eval_id', 'failed_status'])
|
327 |
+
## pending list test
|
328 |
+
pending_list = [row for _,row in pending_eval_queue_df.iterrows()]
|
329 |
+
|
330 |
+
for pend in pending_list:
|
331 |
+
print("pending", pend)
|
332 |
+
|
333 |
+
# 根据正在运行的评测队列更新当前 GPU 使用情况
|
334 |
+
current_gpu_usage = 0
|
335 |
+
current_A800gpu_usage = 0
|
336 |
+
for _, row in running_eval_queue_df.iterrows():
|
337 |
+
print(get_gpu_number(row['params']), row['params'])
|
338 |
+
gpus_num, gpus_queue_id = get_gpu_number(row['params'])
|
339 |
+
current_gpu_usage += gpus_num
|
340 |
+
if gpus_queue_id == LC_A800_QUEUE_ID:
|
341 |
+
current_A800gpu_usage += 1
|
342 |
+
# print(f'Current GPU usage: {current_gpu_usage}/{MAX_GPU_USAGE}')
|
343 |
+
running_models = ", ".join([row["model"] for _, row in running_eval_queue_df.iterrows()])
|
344 |
+
if running_models != prev_running_models:
|
345 |
+
print(f'{datetime.now().strftime("%Y-%m-%d %H:%M:%S")} | GPU usage: {current_gpu_usage}/{MAX_GPU_USAGE} | Running models: {running_models}')
|
346 |
+
prev_running_models = running_models
|
347 |
+
|
348 |
+
print("current A800 GPU usage", current_A800gpu_usage)
|
349 |
+
# 只查询 pending_eval_queue_df 中的前5个待处理的评测
|
350 |
+
if not pending_eval_queue_df.empty:
|
351 |
+
for i,row in pending_eval_queue_df.iterrows():
|
352 |
+
#if i >= 3 : break
|
353 |
+
required_gpus, gpus_queue_id = get_gpu_number(row['params'])
|
354 |
+
if gpus_queue_id == LC_A800_QUEUE_ID:
|
355 |
+
if current_A800gpu_usage >= MAX_A800_UASGE:
|
356 |
+
print(current_A800gpu_usage >= MAX_A800_UASGE, row['model'])
|
357 |
+
continue
|
358 |
+
if "princeton-nlp/Llama-3-8B-ProLong-512k" in row['model']:
|
359 |
+
required_gpus += 1
|
360 |
+
if current_gpu_usage + required_gpus <= MAX_GPU_USAGE:
|
361 |
+
#确认是否有重复提交
|
362 |
+
if row['model'] in [row["model"] for _, row in running_eval_queue_df.iterrows()]:
|
363 |
+
priniit(f'{datetime.now().strftime("%Y-%m-%d %H:%M:%S")} | Evaluation {row["model"]} is already running')
|
364 |
+
update_evaluation_queue(row['model'], 'CANCELLED', evaluation_info['eval_id'], evaluation_info['evaluationId'])
|
365 |
+
continue
|
366 |
+
# 提交评测
|
367 |
+
try:
|
368 |
+
evaluation_info = submit_evaluation(base_url, secret, row['model'], require_gpus=required_gpus,priority='high',gpus_queue_id=gpus_queue_id)
|
369 |
+
update_evaluation_queue(row['model'], 'RUNNING', evaluation_info['eval_id'], evaluation_info['evaluationId'])
|
370 |
+
update_gpu_usage(required_gpus)
|
371 |
+
print(f'{datetime.now().strftime("%Y-%m-%d %H:%M:%S")} | Submitted evaluation {row["model"]} with {required_gpus} GPUs, submit info: {evaluation_info}')
|
372 |
+
except Exception as e:
|
373 |
+
print(e)
|
374 |
+
continue
|
375 |
+
|
376 |
+
# 查询正在运行的评测状态
|
377 |
+
for _, row in running_eval_queue_df.iterrows():
|
378 |
+
progress = poll_evaluation_progress(base_url, secret, row['eval_id'])
|
379 |
+
if progress['status'] in ['S', 'F', 'C'] or progress['status'] == 'DI':
|
380 |
+
new_status = status_mapping.get(progress['status'], 'FINISHED')
|
381 |
+
update_evaluation_queue(row['model'], new_status)
|
382 |
+
gpus_num, gpus_queue_id = get_gpu_number(row['params'])
|
383 |
+
update_gpu_usage(-gpus_num)
|
384 |
+
if gpus_queue_id == LC_A800_QUEUE_ID:
|
385 |
+
current_A800gpu_usage -= 1
|
386 |
+
print(f'{datetime.now().strftime("%Y-%m-%d %H:%M:%S")} | Evaluation {row["model"]} finished with status {progress["status"]}')
|
387 |
+
if new_status == 'FAILED':
|
388 |
+
print("failed_mapping0", failed_mapping)
|
389 |
+
if row['model'] in failed_mapping:
|
390 |
+
failed_mapping[row['model']] += 1
|
391 |
+
else:
|
392 |
+
failed_mapping[row['model']] = 1
|
393 |
+
print("failed_mapping add", failed_mapping, row['failed_status'])
|
394 |
+
if failed_mapping[row['model']] == 5:
|
395 |
+
del failed_mapping[row['model']]
|
396 |
+
update_evaluation_queue(row['model'], 'PENDING_'+str(int(row['failed_status']+1)))
|
397 |
+
else:
|
398 |
+
update_evaluation_queue(row['model'], 'PENDING')
|
399 |
+
print(f'{datetime.now().strftime("%Y-%m-%d %H:%M:%S")} |--------------- RePending {row["model"]} ------------ ')
|
400 |
+
elif new_status == 'FINISHED':
|
401 |
+
print(progress)
|
402 |
+
save_and_upload_results(row['model'], progress['details'])
|
403 |
+
|
404 |
+
time.sleep(300) # 调整队列检查间隔
|
src/scripts/create_request_file.py
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
import pprint
|
4 |
+
from datetime import datetime, timezone
|
5 |
+
|
6 |
+
import click
|
7 |
+
from colorama import Fore
|
8 |
+
from huggingface_hub import HfApi, snapshot_download
|
9 |
+
|
10 |
+
from src.submission.check_validity import get_model_size
|
11 |
+
from src.display.utils import ModelType, WeightType
|
12 |
+
|
13 |
+
EVAL_REQUESTS_PATH = "eval-queue"
|
14 |
+
QUEUE_REPO = "open-cn-llm-leaderboard/vlm_requests"
|
15 |
+
|
16 |
+
precisions = ("float16", "bfloat16", "8bit (LLM.int8)", "4bit (QLoRA / FP4)", "GPTQ")
|
17 |
+
model_types = [e.name for e in ModelType]
|
18 |
+
weight_types = [e.name for e in WeightType]
|
19 |
+
|
20 |
+
|
21 |
+
def main():
|
22 |
+
api = HfApi()
|
23 |
+
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
|
24 |
+
snapshot_download(repo_id=QUEUE_REPO, revision="main", local_dir=EVAL_REQUESTS_PATH, repo_type="dataset")
|
25 |
+
|
26 |
+
model_name = click.prompt("Enter model name")
|
27 |
+
revision = click.prompt("Enter revision", default="main")
|
28 |
+
precision = click.prompt("Enter precision", default="float16", type=click.Choice(precisions))
|
29 |
+
model_type = click.prompt("Enter model type", type=click.Choice(model_types))
|
30 |
+
weight_type = click.prompt("Enter weight type", default="Original", type=click.Choice(weight_types))
|
31 |
+
base_model = click.prompt("Enter base model", default="")
|
32 |
+
status = click.prompt("Enter status", default="FINISHED")
|
33 |
+
|
34 |
+
try:
|
35 |
+
model_info = api.model_info(repo_id=model_name, revision=revision)
|
36 |
+
except Exception as e:
|
37 |
+
print(f"{Fore.RED}Could not find model info for {model_name} on the Hub\n{e}{Fore.RESET}")
|
38 |
+
return 1
|
39 |
+
|
40 |
+
model_size = get_model_size(model_info=model_info, precision=precision)
|
41 |
+
|
42 |
+
try:
|
43 |
+
license = model_info.cardData["license"]
|
44 |
+
except Exception:
|
45 |
+
license = "?"
|
46 |
+
|
47 |
+
eval_entry = {
|
48 |
+
"model": model_name,
|
49 |
+
"base_model": base_model,
|
50 |
+
"revision": revision,
|
51 |
+
"private": False,
|
52 |
+
"precision": precision,
|
53 |
+
"weight_type": weight_type,
|
54 |
+
"status": status,
|
55 |
+
"submitted_time": current_time,
|
56 |
+
"model_type": model_type,
|
57 |
+
"likes": model_info.likes,
|
58 |
+
"params": model_size,
|
59 |
+
"license": license,
|
60 |
+
}
|
61 |
+
|
62 |
+
user_name = ""
|
63 |
+
model_path = model_name
|
64 |
+
if "/" in model_name:
|
65 |
+
user_name = model_name.split("/")[0]
|
66 |
+
model_path = model_name.split("/")[1]
|
67 |
+
|
68 |
+
pprint.pprint(eval_entry)
|
69 |
+
|
70 |
+
if click.confirm("Do you want to continue? This request file will be pushed to the hub"):
|
71 |
+
click.echo("continuing...")
|
72 |
+
|
73 |
+
out_dir = f"{EVAL_REQUESTS_PATH}/{user_name}"
|
74 |
+
os.makedirs(out_dir, exist_ok=True)
|
75 |
+
out_path = f"{out_dir}/{model_path}_eval_request_{False}_{precision}_{weight_type}.json"
|
76 |
+
|
77 |
+
with open(out_path, "w") as f:
|
78 |
+
# f.write(json.dumps(eval_entry))
|
79 |
+
json.dump(eval_entry, f, indent=4)
|
80 |
+
|
81 |
+
api.upload_file(
|
82 |
+
path_or_fileobj=out_path,
|
83 |
+
path_in_repo=out_path.split(f"{EVAL_REQUESTS_PATH}/")[1],
|
84 |
+
repo_id=QUEUE_REPO,
|
85 |
+
repo_type="dataset",
|
86 |
+
commit_message=f"Add {model_name} to eval queue",
|
87 |
+
)
|
88 |
+
else:
|
89 |
+
click.echo("aborting...")
|
90 |
+
|
91 |
+
|
92 |
+
if __name__ == "__main__":
|
93 |
+
main()
|
src/scripts/update_all_request_files.py
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#from huggingface_hub import ModelFilter, snapshot_download
|
2 |
+
from huggingface_hub import snapshot_download
|
3 |
+
from huggingface_hub import ModelCard
|
4 |
+
|
5 |
+
import json
|
6 |
+
import time
|
7 |
+
|
8 |
+
from src.submission.check_validity import is_model_on_hub, check_model_card, get_model_tags
|
9 |
+
from src.envs import DYNAMIC_INFO_REPO, DYNAMIC_INFO_PATH, DYNAMIC_INFO_FILE_PATH, API, TOKEN
|
10 |
+
|
11 |
+
def update_models(file_path, models):
|
12 |
+
"""
|
13 |
+
Search through all JSON files in the specified root folder and its subfolders,
|
14 |
+
and update the likes key in JSON dict from value of input dict
|
15 |
+
"""
|
16 |
+
with open(file_path, "r") as f:
|
17 |
+
model_infos = json.load(f)
|
18 |
+
for model_id, data in model_infos.items():
|
19 |
+
if model_id not in models:
|
20 |
+
data['still_on_hub'] = False
|
21 |
+
data['likes'] = 0
|
22 |
+
data['downloads'] = 0
|
23 |
+
data['created_at'] = ""
|
24 |
+
continue
|
25 |
+
|
26 |
+
model_cfg = models[model_id]
|
27 |
+
data['likes'] = model_cfg.likes
|
28 |
+
data['downloads'] = model_cfg.downloads
|
29 |
+
data['created_at'] = str(model_cfg.created_at)
|
30 |
+
#data['params'] = get_model_size(model_cfg, data['precision'])
|
31 |
+
data['license'] = model_cfg.card_data.license if model_cfg.card_data is not None else ""
|
32 |
+
|
33 |
+
# Is the model still on the hub?
|
34 |
+
model_name = model_id
|
35 |
+
if model_cfg.card_data is not None and model_cfg.card_data.base_model is not None:
|
36 |
+
model_name = model_cfg.card_data.base_model # for adapters, we look at the parent model
|
37 |
+
still_on_hub, _, _ = is_model_on_hub(
|
38 |
+
model_name=model_name, revision=data.get("revision"), trust_remote_code=True, test_tokenizer=False, token=TOKEN
|
39 |
+
)
|
40 |
+
# If the model doesn't have a model card or a license, we consider it's deleted
|
41 |
+
if still_on_hub:
|
42 |
+
try:
|
43 |
+
status, _, model_card = check_model_card(model_id)
|
44 |
+
if status is False:
|
45 |
+
still_on_hub = False
|
46 |
+
except Exception:
|
47 |
+
model_card = None
|
48 |
+
still_on_hub = False
|
49 |
+
data['still_on_hub'] = still_on_hub
|
50 |
+
|
51 |
+
tags = get_model_tags(model_card, model_id) if still_on_hub else []
|
52 |
+
|
53 |
+
data["tags"] = tags
|
54 |
+
|
55 |
+
with open(file_path, 'w') as f:
|
56 |
+
json.dump(model_infos, f, indent=2)
|
57 |
+
|
58 |
+
def update_dynamic_files():
|
59 |
+
""" This will only update metadata for models already linked in the repo, not add missing ones.
|
60 |
+
"""
|
61 |
+
snapshot_download(
|
62 |
+
repo_id=DYNAMIC_INFO_REPO, local_dir=DYNAMIC_INFO_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30
|
63 |
+
)
|
64 |
+
|
65 |
+
print("UPDATE_DYNAMIC: Loaded snapshot")
|
66 |
+
# Get models
|
67 |
+
start = time.time()
|
68 |
+
|
69 |
+
models = list(API.list_models(
|
70 |
+
#filter=ModelFilter(task="text-generation"),
|
71 |
+
task="text-generation",
|
72 |
+
full=False,
|
73 |
+
cardData=True,
|
74 |
+
fetch_config=True,
|
75 |
+
))
|
76 |
+
id_to_model = {model.id : model for model in models}
|
77 |
+
|
78 |
+
print(f"UPDATE_DYNAMIC: Downloaded list of models in {time.time() - start:.2f} seconds")
|
79 |
+
|
80 |
+
start = time.time()
|
81 |
+
|
82 |
+
update_models(DYNAMIC_INFO_FILE_PATH, id_to_model)
|
83 |
+
|
84 |
+
print(f"UPDATE_DYNAMIC: updated in {time.time() - start:.2f} seconds")
|
85 |
+
|
86 |
+
API.upload_file(
|
87 |
+
path_or_fileobj=DYNAMIC_INFO_FILE_PATH,
|
88 |
+
path_in_repo=DYNAMIC_INFO_FILE_PATH.split("/")[-1],
|
89 |
+
repo_id=DYNAMIC_INFO_REPO,
|
90 |
+
repo_type="dataset",
|
91 |
+
commit_message=f"Daily request file update.",
|
92 |
+
)
|
93 |
+
print(f"UPDATE_DYNAMIC: pushed to hub")
|
94 |
+
|
src/submission/__pycache__/check_validity.cpython-313.pyc
ADDED
Binary file (8.66 kB). View file
|
|
src/submission/__pycache__/submit.cpython-313.pyc
ADDED
Binary file (4.47 kB). View file
|
|
src/submission/check_validity.py
ADDED
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
import re
|
4 |
+
from collections import defaultdict
|
5 |
+
from datetime import datetime, timedelta, timezone
|
6 |
+
|
7 |
+
import huggingface_hub
|
8 |
+
from huggingface_hub import ModelCard
|
9 |
+
from huggingface_hub.hf_api import ModelInfo
|
10 |
+
from transformers import AutoConfig
|
11 |
+
from transformers.models.auto.tokenization_auto import AutoTokenizer
|
12 |
+
|
13 |
+
from src.envs import HAS_HIGHER_RATE_LIMIT
|
14 |
+
|
15 |
+
def check_model_card(repo_id: str) -> tuple[bool, str]:
|
16 |
+
"""Checks if the model card and license exist and have been filled"""
|
17 |
+
try:
|
18 |
+
card = ModelCard.load(repo_id)
|
19 |
+
except huggingface_hub.utils.EntryNotFoundError:
|
20 |
+
return False, "Please add a model card to your model to explain how you trained/fine-tuned it."
|
21 |
+
|
22 |
+
# Enforce license metadata
|
23 |
+
if card.data.license is None:
|
24 |
+
if not ("license_name" in card.data and "license_link" in card.data):
|
25 |
+
return False, (
|
26 |
+
"License not found. Please add a license to your model card using the `license` metadata or a"
|
27 |
+
" `license_name`/`license_link` pair."
|
28 |
+
)
|
29 |
+
|
30 |
+
# Enforce card content
|
31 |
+
if len(card.text) < 200:
|
32 |
+
return False, "Please add a description to your model card, it is too short."
|
33 |
+
|
34 |
+
return True, ""
|
35 |
+
|
36 |
+
def is_model_on_hub(model_name: str, revision: str, token: str = None, trust_remote_code=True, test_tokenizer=False) -> tuple[bool, str]:
|
37 |
+
"""Checks if the model model_name is on the hub, and whether it (and its tokenizer) can be loaded with AutoClasses."""
|
38 |
+
try:
|
39 |
+
config = AutoConfig.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token)
|
40 |
+
if test_tokenizer:
|
41 |
+
try:
|
42 |
+
tk = AutoTokenizer.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token)
|
43 |
+
except ValueError as e:
|
44 |
+
return (
|
45 |
+
False,
|
46 |
+
f"uses a tokenizer which is not in a transformers release: {e}",
|
47 |
+
None
|
48 |
+
)
|
49 |
+
except Exception as e:
|
50 |
+
return (False, "'s tokenizer cannot be loaded. Is your tokenizer class in a stable transformers release, and correctly configured?", None)
|
51 |
+
return True, None, config
|
52 |
+
|
53 |
+
except ValueError:
|
54 |
+
return (
|
55 |
+
False,
|
56 |
+
"needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard.",
|
57 |
+
None
|
58 |
+
)
|
59 |
+
|
60 |
+
except Exception as e:
|
61 |
+
return False, "was not found on hub!", None
|
62 |
+
|
63 |
+
|
64 |
+
def get_model_size(model_info: ModelInfo, precision: str):
|
65 |
+
"""Gets the model size from the configuration, or the model name if the configuration does not contain the information."""
|
66 |
+
try:
|
67 |
+
model_size = round(model_info.safetensors["total"] / 1e9, 3)
|
68 |
+
except (AttributeError, TypeError):
|
69 |
+
return 0 # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in app.py
|
70 |
+
|
71 |
+
size_factor = 8 if (precision == "GPTQ" or "gptq" in model_info.modelId.lower()) else 1
|
72 |
+
model_size = size_factor * model_size
|
73 |
+
return model_size
|
74 |
+
|
75 |
+
def get_model_arch(model_info: ModelInfo):
|
76 |
+
"""Gets the model architecture from the configuration"""
|
77 |
+
return model_info.config.get("architectures", "Unknown")
|
78 |
+
|
79 |
+
def already_submitted_models(requested_models_dir: str) -> set[str]:
|
80 |
+
"""Gather a list of already submitted models to avoid duplicates"""
|
81 |
+
depth = 1
|
82 |
+
file_names = []
|
83 |
+
users_to_submission_dates = defaultdict(list)
|
84 |
+
|
85 |
+
for root, _, files in os.walk(requested_models_dir):
|
86 |
+
current_depth = root.count(os.sep) - requested_models_dir.count(os.sep)
|
87 |
+
if current_depth == depth:
|
88 |
+
for file in files:
|
89 |
+
if not file.endswith(".json"):
|
90 |
+
continue
|
91 |
+
with open(os.path.join(root, file), "r") as f:
|
92 |
+
info = json.load(f)
|
93 |
+
file_names.append(f"{info['model']}_{info['revision']}_{info['precision']}")
|
94 |
+
|
95 |
+
# Select organisation
|
96 |
+
if info["model"].count("/") == 0 or "submitted_time" not in info:
|
97 |
+
continue
|
98 |
+
organisation, _ = info["model"].split("/")
|
99 |
+
users_to_submission_dates[organisation].append(info["submitted_time"])
|
100 |
+
|
101 |
+
return set(file_names), users_to_submission_dates
|
102 |
+
|
103 |
+
def user_submission_permission(org_or_user, users_to_submission_dates, rate_limit_period, rate_limit_quota):
|
104 |
+
if org_or_user not in users_to_submission_dates:
|
105 |
+
return True, ""
|
106 |
+
submission_dates = sorted(users_to_submission_dates[org_or_user])
|
107 |
+
|
108 |
+
time_limit = (datetime.now(timezone.utc) - timedelta(days=rate_limit_period)).strftime("%Y-%m-%dT%H:%M:%SZ")
|
109 |
+
submissions_after_timelimit = [d for d in submission_dates if d > time_limit]
|
110 |
+
|
111 |
+
num_models_submitted_in_period = len(submissions_after_timelimit)
|
112 |
+
if org_or_user in HAS_HIGHER_RATE_LIMIT:
|
113 |
+
rate_limit_quota = 2 * rate_limit_quota
|
114 |
+
|
115 |
+
if num_models_submitted_in_period > rate_limit_quota:
|
116 |
+
error_msg = f"Organisation or user `{org_or_user}`"
|
117 |
+
error_msg += f"already has {num_models_submitted_in_period} model requests submitted to the leaderboard "
|
118 |
+
error_msg += f"in the last {rate_limit_period} days.\n"
|
119 |
+
error_msg += (
|
120 |
+
"Please wait a couple of days before resubmitting, so that everybody can enjoy using the leaderboard 🤗"
|
121 |
+
)
|
122 |
+
return False, error_msg
|
123 |
+
return True, ""
|
124 |
+
|
125 |
+
def get_model_tags(model_card, model: str):
|
126 |
+
is_merge_from_metadata = False
|
127 |
+
is_moe_from_metadata = False
|
128 |
+
|
129 |
+
tags = []
|
130 |
+
if model_card is None:
|
131 |
+
return tags
|
132 |
+
if model_card.data.tags:
|
133 |
+
is_merge_from_metadata = "merge" in model_card.data.tags
|
134 |
+
is_moe_from_metadata = "moe" in model_card.data.tags
|
135 |
+
merge_keywords = ["merged model", "merge model"]
|
136 |
+
# If the model is a merge but not saying it in the metadata, we flag it
|
137 |
+
is_merge_from_model_card = any(keyword in model_card.text.lower() for keyword in merge_keywords)
|
138 |
+
if is_merge_from_model_card or is_merge_from_metadata:
|
139 |
+
tags.append("merge")
|
140 |
+
if not is_merge_from_metadata:
|
141 |
+
tags.append("flagged:undisclosed_merge")
|
142 |
+
moe_keywords = ["moe", "mixtral"]
|
143 |
+
is_moe_from_model_card = any(keyword in model_card.text.lower() for keyword in moe_keywords)
|
144 |
+
is_moe_from_name = "moe" in model.lower().replace("/", "-").replace("_", "-").split("-")
|
145 |
+
if is_moe_from_model_card or is_moe_from_name or is_moe_from_metadata:
|
146 |
+
tags.append("moe")
|
147 |
+
# We no longer tag undisclosed MoEs
|
148 |
+
#if not is_moe_from_metadata:
|
149 |
+
# tags.append("flagged:undisclosed_moe")
|
150 |
+
|
151 |
+
|
152 |
+
return tags
|
src/submission/submit.py
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
from datetime import datetime, timezone
|
4 |
+
|
5 |
+
from huggingface_hub import snapshot_download
|
6 |
+
from src.submission.check_validity import get_model_tags
|
7 |
+
from src.display.formatting import styled_error, styled_message, styled_warning
|
8 |
+
from src.envs import API, EVAL_REQUESTS_PATH, DYNAMIC_INFO_PATH, DYNAMIC_INFO_FILE_PATH, DYNAMIC_INFO_REPO, TOKEN, QUEUE_REPO, RATE_LIMIT_PERIOD, RATE_LIMIT_QUOTA
|
9 |
+
from src.submission.check_validity import (
|
10 |
+
already_submitted_models,
|
11 |
+
check_model_card,
|
12 |
+
get_model_size,
|
13 |
+
is_model_on_hub,
|
14 |
+
)
|
15 |
+
|
16 |
+
REQUESTED_MODELS = None
|
17 |
+
USERS_TO_SUBMISSION_DATES = None
|
18 |
+
|
19 |
+
def add_new_eval(
|
20 |
+
model: str,
|
21 |
+
model_api_url: str,
|
22 |
+
model_api_key: str,
|
23 |
+
model_api_name: str,
|
24 |
+
base_model: str,
|
25 |
+
revision: str,
|
26 |
+
precision: str,
|
27 |
+
private: str,
|
28 |
+
weight_type: str,
|
29 |
+
model_type: str,
|
30 |
+
runsh,
|
31 |
+
adapter
|
32 |
+
):
|
33 |
+
global REQUESTED_MODELS
|
34 |
+
global USERS_TO_SUBMISSION_DATES
|
35 |
+
if not REQUESTED_MODELS:
|
36 |
+
REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH)
|
37 |
+
|
38 |
+
user_name = ""
|
39 |
+
model_path = model
|
40 |
+
if "/" in model:
|
41 |
+
user_name = model.split("/")[0]
|
42 |
+
model_path = model.split("/")[1]
|
43 |
+
|
44 |
+
precision = precision.split(" ")[0]
|
45 |
+
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
|
46 |
+
|
47 |
+
if model_type is None:
|
48 |
+
model_type = ""
|
49 |
+
#return styled_error("Please select a model type.")
|
50 |
+
|
51 |
+
# Does the model actually exist?
|
52 |
+
if revision == "":
|
53 |
+
revision = "main"
|
54 |
+
|
55 |
+
architecture = "?"
|
56 |
+
downloads = 0
|
57 |
+
created_at = ""
|
58 |
+
# Is the model on the hub?
|
59 |
+
if len(model_api_url)==0:
|
60 |
+
#if weight_type in ["Delta", "Adapter"]:
|
61 |
+
# base_model_on_hub, error, _ = is_model_on_hub(model_name=base_model, revision=revision, token=TOKEN, test_tokenizer=True)
|
62 |
+
# if not base_model_on_hub:
|
63 |
+
# return styled_error(f'Base model "{base_model}" {error}')
|
64 |
+
|
65 |
+
#if not weight_type == "Adapter":
|
66 |
+
# model_on_hub, error, model_config = is_model_on_hub(model_name=model, revision=revision, test_tokenizer=True)
|
67 |
+
# if not model_on_hub:
|
68 |
+
# return styled_error(f'Model "{model}" {error}')
|
69 |
+
# if model_config is not None:
|
70 |
+
# architectures = getattr(model_config, "architectures", None)
|
71 |
+
# if architectures:
|
72 |
+
# architecture = ";".join(architectures)
|
73 |
+
# downloads = getattr(model_config, 'downloads', 0)
|
74 |
+
# created_at = getattr(model_config, 'created_at', '')
|
75 |
+
#if not weight_type == "Adapter":
|
76 |
+
# model_on_hub, error, _ = is_model_on_hub(model_name=model, revision=revision, token=TOKEN, test_tokenizer=True)
|
77 |
+
# if not model_on_hub:
|
78 |
+
# return styled_error(f'Model "{model}" {error}')
|
79 |
+
|
80 |
+
# Is the model info correctly filled?
|
81 |
+
try:
|
82 |
+
model_info = API.model_info(repo_id=model, revision=revision)
|
83 |
+
except Exception:
|
84 |
+
return styled_error("Could not get your model information. Please fill it up properly.")
|
85 |
+
model_size = get_model_size(model_info=model_info, precision=precision)
|
86 |
+
|
87 |
+
# Were the model card and license filled?
|
88 |
+
try:
|
89 |
+
license = model_info.cardData["license"]
|
90 |
+
except Exception:
|
91 |
+
return styled_error("Please select a license for your model")
|
92 |
+
|
93 |
+
modelcard_OK, error_msg = check_model_card(model)
|
94 |
+
if not modelcard_OK:
|
95 |
+
return styled_error(error_msg)
|
96 |
+
#tags = get_model_tags(model_card, model)
|
97 |
+
# TODO: tags
|
98 |
+
tags = []
|
99 |
+
|
100 |
+
likes = model_info.likes
|
101 |
+
else:
|
102 |
+
model_size = 0
|
103 |
+
license = ""
|
104 |
+
likes = 0
|
105 |
+
tags = []
|
106 |
+
downloads = 0
|
107 |
+
|
108 |
+
# Seems good, creating the eval
|
109 |
+
print("Adding new eval", runsh)
|
110 |
+
max_size = 5 * 1024 * 1024 # 5MB
|
111 |
+
if (runsh is not None) and (adapter is not None):
|
112 |
+
if os.path.getsize(runsh.name) > max_size:
|
113 |
+
return "错误:文件大小不能超过 5MB!"
|
114 |
+
if os.path.getsize(adapter.name) > max_size:
|
115 |
+
return "错误:文件大小不能超过 5MB!"
|
116 |
+
with open(runsh.name, "r") as f:
|
117 |
+
runsh = f.read()
|
118 |
+
with open(adapter.name, "r") as f:
|
119 |
+
adapter = f.read()
|
120 |
+
else:
|
121 |
+
runsh = ""
|
122 |
+
adapter = ""
|
123 |
+
eval_entry = {
|
124 |
+
"model": model,
|
125 |
+
"model_api_url": model_api_url,
|
126 |
+
"model_api_key": model_api_key,
|
127 |
+
"model_api_name": model_api_name,
|
128 |
+
"base_model": base_model,
|
129 |
+
"revision": revision,
|
130 |
+
"precision": precision,
|
131 |
+
"private": private,
|
132 |
+
"weight_type": weight_type,
|
133 |
+
"status": "PENDING",
|
134 |
+
"submitted_time": current_time,
|
135 |
+
"model_type": model_type,
|
136 |
+
#"likes": model_info.likes,
|
137 |
+
"params": model_size,
|
138 |
+
#"license": license,
|
139 |
+
"private": False,
|
140 |
+
"runsh": runsh,
|
141 |
+
"adapter": adapter,
|
142 |
+
}
|
143 |
+
|
144 |
+
supplementary_info = {
|
145 |
+
"likes": 0,
|
146 |
+
"license": license,
|
147 |
+
"still_on_hub": True,
|
148 |
+
"tags": tags,
|
149 |
+
"downloads": downloads,
|
150 |
+
"created_at": created_at
|
151 |
+
}
|
152 |
+
|
153 |
+
# Check for duplicate submission
|
154 |
+
if f"{model}_{revision}_{precision}" in REQUESTED_MODELS:
|
155 |
+
return styled_warning("This model has been already submitted.")
|
156 |
+
|
157 |
+
print("Creating eval file")
|
158 |
+
OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
|
159 |
+
os.makedirs(OUT_DIR, exist_ok=True)
|
160 |
+
out_path = f"{OUT_DIR}/{model_path}_eval_request_False_{precision}_{weight_type}.json"
|
161 |
+
|
162 |
+
with open(out_path, "w") as f:
|
163 |
+
f.write(json.dumps(eval_entry))
|
164 |
+
|
165 |
+
print("Uploading eval file")
|
166 |
+
API.upload_file(
|
167 |
+
path_or_fileobj=out_path,
|
168 |
+
path_in_repo=out_path.split("eval-queue/")[1],
|
169 |
+
repo_id=QUEUE_REPO,
|
170 |
+
repo_type="dataset",
|
171 |
+
commit_message=f"Add {model} to eval queue",
|
172 |
+
)
|
173 |
+
|
174 |
+
# We want to grab the latest version of the submission file to not accidentally overwrite it
|
175 |
+
snapshot_download(
|
176 |
+
repo_id=DYNAMIC_INFO_REPO, local_dir=DYNAMIC_INFO_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30
|
177 |
+
)
|
178 |
+
|
179 |
+
with open(DYNAMIC_INFO_FILE_PATH) as f:
|
180 |
+
all_supplementary_info = json.load(f)
|
181 |
+
|
182 |
+
all_supplementary_info[model] = supplementary_info
|
183 |
+
with open(DYNAMIC_INFO_FILE_PATH, "w") as f:
|
184 |
+
json.dump(all_supplementary_info, f, indent=2)
|
185 |
+
|
186 |
+
API.upload_file(
|
187 |
+
path_or_fileobj=DYNAMIC_INFO_FILE_PATH,
|
188 |
+
path_in_repo=DYNAMIC_INFO_FILE_PATH.split("/")[-1],
|
189 |
+
repo_id=DYNAMIC_INFO_REPO,
|
190 |
+
repo_type="dataset",
|
191 |
+
commit_message=f"Add {model} to dynamic info queue",
|
192 |
+
)
|
193 |
+
|
194 |
+
# Remove the local file
|
195 |
+
os.remove(out_path)
|
196 |
+
|
197 |
+
return styled_message(
|
198 |
+
"Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the model to show in the PENDING list."
|
199 |
+
)
|
src/tools/collections.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import pandas as pd
|
4 |
+
from huggingface_hub import add_collection_item, delete_collection_item, get_collection, update_collection_item
|
5 |
+
#from huggingface_hub.utils._errors import HfHubHTTPError
|
6 |
+
from pandas import DataFrame
|
7 |
+
|
8 |
+
from src.display.utils import AutoEvalColumn, ModelType
|
9 |
+
from src.envs import TOKEN, PATH_TO_COLLECTION
|
10 |
+
|
11 |
+
# Specific intervals for the collections
|
12 |
+
intervals = {
|
13 |
+
"1B": pd.Interval(0, 1.5, closed="right"),
|
14 |
+
"3B": pd.Interval(2.5, 3.5, closed="neither"),
|
15 |
+
"7B": pd.Interval(6, 8, closed="neither"),
|
16 |
+
"13B": pd.Interval(10, 14, closed="neither"),
|
17 |
+
"30B": pd.Interval(25, 35, closed="neither"),
|
18 |
+
"65B": pd.Interval(60, 70, closed="neither"),
|
19 |
+
}
|
20 |
+
|
21 |
+
|
22 |
+
def update_collections(df: DataFrame):
|
23 |
+
"""This function updates the Open LLM Leaderboard model collection with the latest best models for
|
24 |
+
each size category and type.
|
25 |
+
"""
|
26 |
+
collection = get_collection(collection_slug=PATH_TO_COLLECTION, token=TOKEN)
|
27 |
+
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
|
28 |
+
|
29 |
+
cur_best_models = []
|
30 |
+
|
31 |
+
ix = 0
|
32 |
+
for type in ModelType:
|
33 |
+
if type.value.name == "":
|
34 |
+
continue
|
35 |
+
for size in intervals:
|
36 |
+
# We filter the df to gather the relevant models
|
37 |
+
type_emoji = [t[0] for t in type.value.symbol]
|
38 |
+
filtered_df = df[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
|
39 |
+
|
40 |
+
numeric_interval = pd.IntervalIndex([intervals[size]])
|
41 |
+
mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
|
42 |
+
filtered_df = filtered_df.loc[mask]
|
43 |
+
|
44 |
+
best_models = list(
|
45 |
+
filtered_df.sort_values(AutoEvalColumn.average.name, ascending=False)[AutoEvalColumn.dummy.name]
|
46 |
+
)
|
47 |
+
print(type.value.symbol, size, best_models[:10])
|
48 |
+
|
49 |
+
# We add them one by one to the leaderboard
|
50 |
+
for model in best_models:
|
51 |
+
ix += 1
|
52 |
+
cur_len_collection = len(collection.items)
|
53 |
+
try:
|
54 |
+
collection = add_collection_item(
|
55 |
+
PATH_TO_COLLECTION,
|
56 |
+
item_id=model,
|
57 |
+
item_type="model",
|
58 |
+
exists_ok=True,
|
59 |
+
note=f"Best {type.to_str(' ')} model of around {size} on the leaderboard today!",
|
60 |
+
token=TOKEN,
|
61 |
+
)
|
62 |
+
if (
|
63 |
+
len(collection.items) > cur_len_collection
|
64 |
+
): # we added an item - we make sure its position is correct
|
65 |
+
item_object_id = collection.items[-1].item_object_id
|
66 |
+
update_collection_item(
|
67 |
+
collection_slug=PATH_TO_COLLECTION, item_object_id=item_object_id, position=ix
|
68 |
+
)
|
69 |
+
cur_len_collection = len(collection.items)
|
70 |
+
cur_best_models.append(model)
|
71 |
+
break
|
72 |
+
#except HfHubHTTPError:
|
73 |
+
except:
|
74 |
+
continue
|
75 |
+
|
76 |
+
collection = get_collection(PATH_TO_COLLECTION, token=TOKEN)
|
77 |
+
for item in collection.items:
|
78 |
+
if item.item_id not in cur_best_models:
|
79 |
+
try:
|
80 |
+
delete_collection_item(
|
81 |
+
collection_slug=PATH_TO_COLLECTION, item_object_id=item.item_object_id, token=TOKEN
|
82 |
+
)
|
83 |
+
#except HfHubHTTPError:
|
84 |
+
except:
|
85 |
+
continue
|
src/tools/datastatics.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import datetime
|
4 |
+
from src.envs import API, EVAL_REQUESTS_PATH
|
5 |
+
|
6 |
+
def get_statics(save_path=EVAL_REQUESTS_PATH):
|
7 |
+
"""Creates the different dataframes for the evaluation queues requestes"""
|
8 |
+
entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")]
|
9 |
+
all_evals = []
|
10 |
+
|
11 |
+
for entry in entries:
|
12 |
+
print("get_statics", entry)
|
13 |
+
if ".json" in entry:
|
14 |
+
file_path = os.path.join(save_path, entry)
|
15 |
+
with open(file_path) as fp:
|
16 |
+
data = json.load(fp)
|
17 |
+
all_evals.append(data)
|
18 |
+
elif ".md" not in entry:
|
19 |
+
sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if not e.startswith(".")]
|
20 |
+
for sub_entry in sub_entries:
|
21 |
+
file_path = os.path.join(save_path, entry, sub_entry)
|
22 |
+
with open(file_path) as fp:
|
23 |
+
data = json.load(fp)
|
24 |
+
all_evals.append(data)
|
25 |
+
finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"]
|
26 |
+
|
27 |
+
finished = len(finished_list)
|
28 |
+
submmit = len(all_evals)
|
29 |
+
print("get_stativs",finished, submmit)
|
30 |
+
with open("statics_eachday.json","r") as f:
|
31 |
+
statics = json.load(f)
|
32 |
+
print("get_statics",type(statics),str(datetime.datetime.now()), type(str(datetime.datetime.now())))
|
33 |
+
statics.append({"date":str(datetime.datetime.now()),"finished":finished, "submmit":submmit})
|
34 |
+
with open("statics_eachday.json","w") as f:
|
35 |
+
f.write(json.dumps(statics))
|
36 |
+
|
37 |
+
|
38 |
+
if __name__ == "__main__":
|
39 |
+
get_statics(EVAL_REQUESTS_PATH)
|
src/tools/model_backlinks.py
ADDED
@@ -0,0 +1,1309 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
models = [
|
2 |
+
"uni-tianyan/Uni-TianYan",
|
3 |
+
"fangloveskari/ORCA_LLaMA_70B_QLoRA",
|
4 |
+
"garage-bAInd/Platypus2-70B-instruct",
|
5 |
+
"upstage/Llama-2-70b-instruct-v2",
|
6 |
+
"fangloveskari/Platypus_QLoRA_LLaMA_70b",
|
7 |
+
"yeontaek/llama-2-70B-ensemble-v5",
|
8 |
+
"TheBloke/Genz-70b-GPTQ",
|
9 |
+
"TheBloke/Platypus2-70B-Instruct-GPTQ",
|
10 |
+
"psmathur/model_007",
|
11 |
+
"yeontaek/llama-2-70B-ensemble-v4",
|
12 |
+
"psmathur/orca_mini_v3_70b",
|
13 |
+
"ehartford/Samantha-1.11-70b",
|
14 |
+
"MayaPH/GodziLLa2-70B",
|
15 |
+
"psmathur/model_007_v2",
|
16 |
+
"chargoddard/MelangeA-70b",
|
17 |
+
"ehartford/Samantha-1.1-70b",
|
18 |
+
"psmathur/model_009",
|
19 |
+
"upstage/Llama-2-70b-instruct",
|
20 |
+
"yeontaek/llama-2-70B-ensemble-v7",
|
21 |
+
"yeontaek/llama-2-70B-ensemble-v6",
|
22 |
+
"chargoddard/MelangeB-70b",
|
23 |
+
"yeontaek/llama-2-70B-ensemble-v3",
|
24 |
+
"chargoddard/MelangeC-70b",
|
25 |
+
"garage-bAInd/Camel-Platypus2-70B",
|
26 |
+
"yeontaek/llama-2-70B-ensemble-v2",
|
27 |
+
"garage-bAInd/Camel-Platypus2-70B",
|
28 |
+
"migtissera/Synthia-70B-v1.2",
|
29 |
+
"v2ray/LLaMA-2-Wizard-70B-QLoRA",
|
30 |
+
"quantumaikr/llama-2-70b-fb16-orca-chat-10k",
|
31 |
+
"v2ray/LLaMA-2-Wizard-70B-QLoRA",
|
32 |
+
"stabilityai/StableBeluga2",
|
33 |
+
"quantumaikr/llama-2-70b-fb16-guanaco-1k",
|
34 |
+
"garage-bAInd/Camel-Platypus2-70B",
|
35 |
+
"migtissera/Synthia-70B-v1.1",
|
36 |
+
"migtissera/Synthia-70B",
|
37 |
+
"psmathur/model_101",
|
38 |
+
"augtoma/qCammel70",
|
39 |
+
"augtoma/qCammel-70",
|
40 |
+
"augtoma/qCammel-70v1",
|
41 |
+
"augtoma/qCammel-70x",
|
42 |
+
"augtoma/qCammel-70-x",
|
43 |
+
"jondurbin/airoboros-l2-70b-gpt4-1.4.1",
|
44 |
+
"dfurman/llama-2-70b-dolphin-peft",
|
45 |
+
"jondurbin/airoboros-l2-70b-2.1",
|
46 |
+
"TheBloke/llama-2-70b-Guanaco-QLoRA-fp16",
|
47 |
+
"quantumaikr/QuantumLM-llama2-70B-Korean-LoRA",
|
48 |
+
"quantumaikr/quantumairk-llama-2-70B-instruct",
|
49 |
+
"psmathur/model_420",
|
50 |
+
"psmathur/model_51",
|
51 |
+
"garage-bAInd/Camel-Platypus2-70B",
|
52 |
+
"TheBloke/Airoboros-L2-70B-2.1-GPTQ",
|
53 |
+
"OpenAssistant/llama2-70b-oasst-sft-v10",
|
54 |
+
"garage-bAInd/Platypus2-70B",
|
55 |
+
"liuxiang886/llama2-70B-qlora-gpt4",
|
56 |
+
"upstage/llama-65b-instruct",
|
57 |
+
"quantumaikr/llama-2-70b-fb16-korean",
|
58 |
+
"NousResearch/Nous-Hermes-Llama2-70b",
|
59 |
+
"v2ray/LLaMA-2-Jannie-70B-QLoRA",
|
60 |
+
"jondurbin/airoboros-l2-70b-gpt4-m2.0",
|
61 |
+
"jondurbin/airoboros-l2-70b-gpt4-m2.0",
|
62 |
+
"OpenAssistant/llama2-70b-oasst-sft-v10",
|
63 |
+
"yeontaek/llama-2-70B-ensemble-v8",
|
64 |
+
"jondurbin/airoboros-l2-70b-gpt4-2.0",
|
65 |
+
"jarradh/llama2_70b_chat_uncensored",
|
66 |
+
"WizardLM/WizardMath-70B-V1.0",
|
67 |
+
"jordiclive/Llama-2-70b-oasst-1-200",
|
68 |
+
"WizardLM/WizardMath-70B-V1.0",
|
69 |
+
"jondurbin/airoboros-l2-70b-gpt4-2.0",
|
70 |
+
"OpenLemur/lemur-70b-chat-v1",
|
71 |
+
"tiiuae/falcon-180B",
|
72 |
+
"tiiuae/falcon-180B",
|
73 |
+
"stabilityai/StableBeluga1-Delta",
|
74 |
+
"psmathur/model_42_70b",
|
75 |
+
"psmathur/test_42_70b",
|
76 |
+
"TheBloke/fiction.live-Kimiko-V2-70B-fp16",
|
77 |
+
"tiiuae/falcon-180B",
|
78 |
+
"WizardLM/WizardMath-70B-V1.0",
|
79 |
+
"tiiuae/falcon-180B-chat",
|
80 |
+
"jondurbin/airoboros-l2-70b-gpt4-2.0",
|
81 |
+
"ehartford/samantha-1.1-llama-33b",
|
82 |
+
"ajibawa-2023/scarlett-33b",
|
83 |
+
"ddobokki/Llama-2-70b-orca-200k",
|
84 |
+
"TheBloke/gpt4-alpaca-lora_mlp-65B-HF",
|
85 |
+
"tiiuae/falcon-180B-chat",
|
86 |
+
"tiiuae/falcon-180B-chat",
|
87 |
+
"tiiuae/falcon-180B",
|
88 |
+
"TheBloke/Lemur-70B-Chat-v1-GPTQ",
|
89 |
+
"NousResearch/Nous-Puffin-70B",
|
90 |
+
"WizardLM/WizardLM-70B-V1.0",
|
91 |
+
"WizardLM/WizardMath-70B-V1.0",
|
92 |
+
"meta-llama/Llama-2-70b-hf",
|
93 |
+
"TheBloke/Llama-2-70B-fp16",
|
94 |
+
"Weyaxi/llama-2-alpacagpt4-1000step",
|
95 |
+
"WizardLM/WizardLM-70B-V1.0",
|
96 |
+
"simsim314/WizardLM-70B-V1.0-HF",
|
97 |
+
"simsim314/WizardLM-70B-V1.0-HF",
|
98 |
+
"WizardLM/WizardLM-70B-V1.0",
|
99 |
+
"openbmb/UltraLM-65b",
|
100 |
+
"psmathur/model_420_preview",
|
101 |
+
"WizardLM/WizardLM-70B-V1.0",
|
102 |
+
"simsim314/WizardLM-70B-V1.0-HF",
|
103 |
+
"OpenBuddy/openbuddy-llama2-70b-v10.1-bf16",
|
104 |
+
"upstage/llama-30b-instruct-2048",
|
105 |
+
"jondurbin/airoboros-65b-gpt4-1.2",
|
106 |
+
"TheBloke/guanaco-65B-HF",
|
107 |
+
"jondurbin/airoboros-65b-gpt4-1.3",
|
108 |
+
"meta-llama/Llama-2-70b-chat-hf",
|
109 |
+
"ValiantLabs/ShiningValiant",
|
110 |
+
"Faradaylab/Aria-70B",
|
111 |
+
"lilloukas/GPlatty-30B",
|
112 |
+
"TheBloke/VicUnlocked-alpaca-65B-QLoRA-fp16",
|
113 |
+
"jondurbin/airoboros-65b-gpt4-1.4-peft",
|
114 |
+
"jondurbin/airoboros-65b-gpt4-1.4",
|
115 |
+
"jondurbin/airoboros-65b-gpt4-2.0",
|
116 |
+
"TheBloke/WizardLM-70B-V1.0-GPTQ",
|
117 |
+
"TheBloke/WizardLM-70B-V1.0-GPTQ",
|
118 |
+
"ariellee/SuperPlatty-30B",
|
119 |
+
"jondurbin/airoboros-65b-gpt4-1.4",
|
120 |
+
"jondurbin/airoboros-65b-gpt4-2.0",
|
121 |
+
"yeontaek/llama-2-70b-IA3-guanaco",
|
122 |
+
"CalderaAI/30B-Lazarus",
|
123 |
+
"Aspik101/trurl-2-13b-pl-instruct_unload",
|
124 |
+
"ehartford/WizardLM-33B-V1.0-Uncensored",
|
125 |
+
"ehartford/WizardLM-33B-V1.0-Uncensored",
|
126 |
+
"OpenBuddy/openbuddy-llama-65b-v8-bf16",
|
127 |
+
"Aspik101/llama-30b-instruct-2048-PL-lora",
|
128 |
+
"h2oai/h2ogpt-research-oasst1-llama-65b",
|
129 |
+
"Aspik101/llama-30b-instruct-2048-PL-lora",
|
130 |
+
"CalderaAI/30B-Epsilon",
|
131 |
+
"Aspik101/llama-30b-2048-instruct-PL-lora_unload",
|
132 |
+
"jondurbin/airoboros-65b-gpt4-m2.0",
|
133 |
+
"jondurbin/airoboros-65b-gpt4-m2.0",
|
134 |
+
"Aeala/Alpaca-elina-65b",
|
135 |
+
"TheBloke/robin-65b-v2-fp16",
|
136 |
+
"TheBloke/gpt4-alpaca-lora-30b-HF",
|
137 |
+
"TheBloke/Llama-2-70B-chat-GPTQ",
|
138 |
+
"upstage/llama-30b-instruct",
|
139 |
+
"OpenLemur/lemur-70b-v1",
|
140 |
+
"lmsys/vicuna-33b-v1.3",
|
141 |
+
"ausboss/llama-30b-supercot",
|
142 |
+
"ai-business/Luban-13B",
|
143 |
+
"Henk717/airochronos-33B",
|
144 |
+
"lmsys/vicuna-33b-v1.3",
|
145 |
+
"Henk717/airochronos-33B",
|
146 |
+
"bavest/fin-llama-33b-merged",
|
147 |
+
"jondurbin/airoboros-33b-gpt4-1.4",
|
148 |
+
"YeungNLP/firefly-llama-30b",
|
149 |
+
"Aspik101/30B-Lazarus-instruct-PL-lora_unload",
|
150 |
+
"uukuguy/speechless-llama2-luban-orca-platypus-13b",
|
151 |
+
"xxyyy123/test_merge_p_ov1_w0.66_w0.5_n1",
|
152 |
+
"jondurbin/airoboros-33b-gpt4-1.2",
|
153 |
+
"TheBloke/alpaca-lora-65B-HF",
|
154 |
+
"bofenghuang/vigogne-33b-instruct",
|
155 |
+
"yeontaek/llama-2-13B-ensemble-v5",
|
156 |
+
"garage-bAInd/Platypus-30B",
|
157 |
+
"Open-Orca/OpenOrca-Platypus2-13B",
|
158 |
+
"kajdun/viwaai-30b_v4",
|
159 |
+
"lilloukas/Platypus-30B",
|
160 |
+
"Open-Orca/OpenOrca-Platypus2-13B",
|
161 |
+
"Henk717/chronoboros-33B",
|
162 |
+
"jondurbin/airoboros-33b-2.1",
|
163 |
+
"HiTZ/alpaca-lora-65b-en-pt-es-ca",
|
164 |
+
"quantumaikr/QuantumLM-70B-hf",
|
165 |
+
"uukuguy/speechless-llama2-13b",
|
166 |
+
"uukuguy/speechless-llama2-hermes-orca-platypus-13b",
|
167 |
+
"openaccess-ai-collective/manticore-30b-chat-pyg-alpha",
|
168 |
+
"LLMs/WizardLM-30B-V1.0",
|
169 |
+
"TheBloke/WizardLM-30B-fp16",
|
170 |
+
"openaccess-ai-collective/hippogriff-30b-chat",
|
171 |
+
"concedo/Vicuzard-30B-Uncensored",
|
172 |
+
"TFLai/OpenOrca-Platypus2-13B-QLoRA-0.80-epoch",
|
173 |
+
"huggingface/llama-65b",
|
174 |
+
"huggyllama/llama-65b",
|
175 |
+
"gaodrew/gaodrew-llama-30b-instruct-2048-Open-Platypus-100steps",
|
176 |
+
"uukuguy/speechless-llama2-hermes-orca-platypus-wizardlm-13b",
|
177 |
+
"Sao10K/Mythical-Destroyer-V2-L2-13B",
|
178 |
+
"camel-ai/CAMEL-33B-Combined-Data",
|
179 |
+
"dsvv-cair/alpaca-cleaned-llama-30b-bf16",
|
180 |
+
"MetaIX/GPT4-X-Alpasta-30b",
|
181 |
+
"garage-bAInd/Stable-Platypus2-13B",
|
182 |
+
"TFLai/Luban-Platypus2-13B-QLora-0.80-epoch",
|
183 |
+
"TheBloke/OpenOrca-Platypus2-13B-GPTQ",
|
184 |
+
"IkariDev/Athena-tmp",
|
185 |
+
"OpenBuddyEA/openbuddy-llama-30b-v7.1-bf16",
|
186 |
+
"OpenBuddyEA/openbuddy-llama-30b-v7.1-bf16",
|
187 |
+
"Open-Orca/OpenOrcaxOpenChat-Preview2-13B",
|
188 |
+
"psmathur/model_007_13b_v2",
|
189 |
+
"Aspik101/Vicuzard-30B-Uncensored-instruct-PL-lora_unload",
|
190 |
+
"jondurbin/airoboros-33b-gpt4-m2.0",
|
191 |
+
"Sao10K/Mythical-Destroyer-L2-13B",
|
192 |
+
"TheBloke/Wizard-Vicuna-30B-Uncensored-fp16",
|
193 |
+
"ehartford/Wizard-Vicuna-30B-Uncensored",
|
194 |
+
"TFLai/Nova-13B",
|
195 |
+
"TheBloke/robin-33B-v2-fp16",
|
196 |
+
"totally-not-an-llm/PuddleJumper-13b",
|
197 |
+
"Aeala/VicUnlocked-alpaca-30b",
|
198 |
+
"Yhyu13/oasst-rlhf-2-llama-30b-7k-steps-hf",
|
199 |
+
"jondurbin/airoboros-33b-gpt4",
|
200 |
+
"jondurbin/airoboros-33b-gpt4-m2.0",
|
201 |
+
"tiiuae/falcon-40b-instruct",
|
202 |
+
"psmathur/orca_mini_v3_13b",
|
203 |
+
"Aeala/GPT4-x-AlpacaDente-30b",
|
204 |
+
"MayaPH/GodziLLa-30B",
|
205 |
+
"jondurbin/airoboros-33b-gpt4-m2.0",
|
206 |
+
"TFLai/SpeechlessV1-Nova-13B",
|
207 |
+
"yeontaek/llama-2-13B-ensemble-v4",
|
208 |
+
"ajibawa-2023/carl-33b",
|
209 |
+
"jondurbin/airoboros-33b-gpt4-2.0",
|
210 |
+
"TFLai/Stable-Platypus2-13B-QLoRA-0.80-epoch",
|
211 |
+
"jondurbin/airoboros-33b-gpt4-1.3",
|
212 |
+
"TehVenom/oasst-sft-6-llama-33b-xor-MERGED-16bit",
|
213 |
+
"TFLai/OrcaMini-Platypus2-13B-QLoRA-0.80-epoch",
|
214 |
+
"jondurbin/airoboros-33b-gpt4-2.0",
|
215 |
+
"chargoddard/Chronorctypus-Limarobormes-13b",
|
216 |
+
"jondurbin/airoboros-33b-gpt4-1.3",
|
217 |
+
"Open-Orca/OpenOrca-Platypus2-13B",
|
218 |
+
"FelixChao/vicuna-33b-coder",
|
219 |
+
"FelixChao/vicuna-33b-coder",
|
220 |
+
"Gryphe/MythoMix-L2-13b",
|
221 |
+
"Aeala/Enterredaas-33b",
|
222 |
+
"yeontaek/llama-2-13B-ensemble-v1",
|
223 |
+
"TFLai/OpenOrcaPlatypus2-Platypus2-13B-QLora-0.80-epoch",
|
224 |
+
"TFLai/Ensemble5-Platypus2-13B-QLora-0.80-epoch",
|
225 |
+
"yeontaek/llama-2-13B-ensemble-v3",
|
226 |
+
"TFLai/MythoMix-Platypus2-13B-QLoRA-0.80-epoch",
|
227 |
+
"yihan6324/llama2-13b-instructmining-40k-sharegpt",
|
228 |
+
"timdettmers/guanaco-33b-merged",
|
229 |
+
"TFLai/EnsembleV5-Nova-13B",
|
230 |
+
"circulus/Llama-2-13b-orca-v1",
|
231 |
+
"Undi95/ReMM-SLERP-L2-13B",
|
232 |
+
"Gryphe/MythoMax-L2-13b",
|
233 |
+
"stabilityai/StableBeluga-13B",
|
234 |
+
"circulus/Llama-2-13b-orca-v1",
|
235 |
+
"ehartford/WizardLM-30B-Uncensored",
|
236 |
+
"The-Face-Of-Goonery/huginnv1.2",
|
237 |
+
"TheBloke/OpenOrcaxOpenChat-Preview2-13B-GPTQ",
|
238 |
+
"Sao10K/Stheno-L2-13B",
|
239 |
+
"bofenghuang/vigogne-2-13b-instruct",
|
240 |
+
"The-Face-Of-Goonery/Huginn-13b-FP16",
|
241 |
+
"grimpep/L2-MythoMax22b-instruct-Falseblock",
|
242 |
+
"TFLai/Nous-Hermes-Platypus2-13B-QLoRA-0.80-epoch",
|
243 |
+
"yeontaek/Platypus2xOpenOrca-13B-IA3-v4",
|
244 |
+
"yeontaek/Platypus2xOpenOrca-13B-IA3",
|
245 |
+
"yeontaek/Platypus2xOpenOrca-13B-IA3-ensemble",
|
246 |
+
"Open-Orca/LlongOrca-13B-16k",
|
247 |
+
"Sao10K/Stheno-Inverted-L2-13B",
|
248 |
+
"garage-bAInd/Camel-Platypus2-13B",
|
249 |
+
"digitous/Alpacino30b",
|
250 |
+
"NousResearch/Nous-Hermes-Llama2-13b",
|
251 |
+
"yeontaek/Platypus2xOpenOrca-13B-IA3-v3",
|
252 |
+
"TFLai/MythicalDestroyerV2-Platypus2-13B-QLora-0.80-epoch",
|
253 |
+
"TheBloke/VicUnlocked-30B-LoRA-HF",
|
254 |
+
"Undi95/Nous-Hermes-13B-Code",
|
255 |
+
"The-Face-Of-Goonery/Chronos-Beluga-v2-13bfp16",
|
256 |
+
"NousResearch/Nous-Hermes-Llama2-13b",
|
257 |
+
"Monero/WizardLM-Uncensored-SuperCOT-StoryTelling-30b",
|
258 |
+
"TheBloke/Wizard-Vicuna-30B-Uncensored-GPTQ",
|
259 |
+
"Open-Orca/OpenOrcaxOpenChat-Preview2-13B",
|
260 |
+
"Austism/chronos-hermes-13b-v2",
|
261 |
+
"yeontaek/Platypus2xOpenOrca-13B-IA3-v2.1",
|
262 |
+
"yeontaek/Platypus2xOpenOrca-13B-IA3-v2",
|
263 |
+
"Gryphe/MythoLogic-L2-13b",
|
264 |
+
"augtoma/qCammel-13",
|
265 |
+
"YeungNLP/firefly-llama2-13b-v1.2",
|
266 |
+
"Aspik101/StableBeluga-13B-instruct-PL-lora_unload",
|
267 |
+
"andreaskoepf/llama2-13b-megacode2_min100",
|
268 |
+
"rombodawg/LosslessMegaCoder-llama2-13b-mini",
|
269 |
+
"yulan-team/YuLan-Chat-2-13b-fp16",
|
270 |
+
"elinas/chronos-33b",
|
271 |
+
"YeungNLP/firefly-llama2-13b",
|
272 |
+
"Sao10K/Medusa-13b",
|
273 |
+
"OptimalScale/robin-65b-v2-delta",
|
274 |
+
"minlik/chinese-alpaca-33b-merged",
|
275 |
+
"OpenAssistant/llama2-13b-megacode2-oasst",
|
276 |
+
"TheBloke/OpenAssistant-SFT-7-Llama-30B-HF",
|
277 |
+
"Undi95/UndiMix-v1-13b",
|
278 |
+
"ehartford/Samantha-1.11-13b",
|
279 |
+
"beaugogh/Llama2-13b-sharegpt4",
|
280 |
+
"Aeala/GPT4-x-AlpacaDente2-30b",
|
281 |
+
"luffycodes/nash-vicuna-13b-v1dot5-ep2-w-rag-w-simple",
|
282 |
+
"WizardLM/WizardLM-13B-V1.1",
|
283 |
+
"uukuguy/speechless-orca-platypus-coig-lite-2k-0.6e-13b",
|
284 |
+
"huggyllama/llama-30b",
|
285 |
+
"Undi95/ReMM-L2-13B-PIPPA",
|
286 |
+
"Undi95/ReMM-L2-13B",
|
287 |
+
"gaodrew/gaodrew-gorgonzola-13b",
|
288 |
+
"lmsys/vicuna-13b-v1.5",
|
289 |
+
"yeontaek/Platypus2xOpenOrca-13B-LoRa",
|
290 |
+
"Yhyu13/llama-30B-hf-openassitant",
|
291 |
+
"huggingface/llama-30b",
|
292 |
+
"lmsys/vicuna-13b-v1.5",
|
293 |
+
"TFLai/Athena-Platypus2-13B-QLora-0.80-epoch",
|
294 |
+
"TheBloke/dromedary-65b-lora-HF",
|
295 |
+
"yeontaek/llama-2-13b-Beluga-QLoRA",
|
296 |
+
"The-Face-Of-Goonery/Huginn-13b-V4",
|
297 |
+
"The-Face-Of-Goonery/Huginn-13b-v4.5",
|
298 |
+
"The-Face-Of-Goonery/Huginn-v3-13b",
|
299 |
+
"tiiuae/falcon-40b",
|
300 |
+
"WhoTookMyAmogusNickname/NewHope_HF_not_official",
|
301 |
+
"gaodrew/OpenOrca-Platypus2-13B-thera-1250",
|
302 |
+
"SLAM-group/NewHope",
|
303 |
+
"garage-bAInd/Platypus2-13B",
|
304 |
+
"migtissera/Synthia-13B",
|
305 |
+
"elinas/chronos-13b-v2",
|
306 |
+
"mosaicml/mpt-30b-chat",
|
307 |
+
"CHIH-HUNG/llama-2-13b-OpenOrca_5w",
|
308 |
+
"uukuguy/speechless-hermes-coig-lite-13b",
|
309 |
+
"TheBloke/tulu-30B-fp16",
|
310 |
+
"uukuguy/speechless-hermes-coig-lite-13b",
|
311 |
+
"xDAN-AI/xDAN_13b_l2_lora",
|
312 |
+
"lmsys/vicuna-13b-v1.5-16k",
|
313 |
+
"openchat/openchat_v3.1",
|
314 |
+
"CHIH-HUNG/llama-2-13b-dolphin_5w",
|
315 |
+
"Aspik101/vicuna-13b-v1.5-PL-lora_unload",
|
316 |
+
"Undi95/MLewd-L2-13B",
|
317 |
+
"ehartford/minotaur-llama2-13b-qlora",
|
318 |
+
"kajdun/iubaris-13b-v3",
|
319 |
+
"TFLai/Limarp-Platypus2-13B-QLoRA-0.80-epoch",
|
320 |
+
"openchat/openchat_v3.1",
|
321 |
+
"uukuguy/speechless-orca-platypus-coig-lite-4k-0.6e-13b",
|
322 |
+
"ziqingyang/chinese-alpaca-2-13b",
|
323 |
+
"TFLai/Airboros2.1-Platypus2-13B-QLora-0.80-epoch",
|
324 |
+
"yeontaek/llama-2-13b-Guanaco-QLoRA",
|
325 |
+
"lmsys/vicuna-13b-v1.5-16k",
|
326 |
+
"ehartford/based-30b",
|
327 |
+
"kingbri/airolima-chronos-grad-l2-13B",
|
328 |
+
"openchat/openchat_v3.2",
|
329 |
+
"uukuguy/speechless-orca-platypus-coig-lite-4k-0.5e-13b",
|
330 |
+
"yeontaek/Platypus2-13B-LoRa",
|
331 |
+
"kingbri/chronolima-airo-grad-l2-13B",
|
332 |
+
"openchat/openchat_v3.2",
|
333 |
+
"TFLai/PuddleJumper-Platypus2-13B-QLoRA-0.80-epoch",
|
334 |
+
"shareAI/llama2-13b-Chinese-chat",
|
335 |
+
"ehartford/WizardLM-1.0-Uncensored-Llama2-13b",
|
336 |
+
"Aspik101/Redmond-Puffin-13B-instruct-PL-lora_unload",
|
337 |
+
"yeontaek/llama-2-13B-ensemble-v6",
|
338 |
+
"WizardLM/WizardLM-13B-V1.2",
|
339 |
+
"TheBloke/WizardLM-13B-V1.1-GPTQ",
|
340 |
+
"bhenrym14/airophin-13b-pntk-16k-fp16",
|
341 |
+
"ehartford/WizardLM-1.0-Uncensored-Llama2-13b",
|
342 |
+
"Mikael110/llama-2-13b-guanaco-fp16",
|
343 |
+
"yeontaek/airoboros-2.1-llama-2-13B-QLoRa",
|
344 |
+
"CalderaAI/13B-Legerdemain-L2",
|
345 |
+
"grimpep/llama2-22b-wizard_vicuna",
|
346 |
+
"grimpep/llama2-22B-GPLATTY",
|
347 |
+
"bhenrym14/airophin-13b-pntk-16k-fp16",
|
348 |
+
"yeontaek/llama-2-13b-QLoRA",
|
349 |
+
"OpenAssistant/llama2-13b-orca-8k-3319",
|
350 |
+
"TheBloke/WizardLM-13B-V1-1-SuperHOT-8K-fp16",
|
351 |
+
"duliadotio/dulia-13b-8k-alpha",
|
352 |
+
"Undi95/LewdEngine",
|
353 |
+
"OpenBuddy/openbuddy-llama2-13b-v8.1-fp16",
|
354 |
+
"CHIH-HUNG/llama-2-13b-open_orca_20w",
|
355 |
+
"bhenrym14/airoboros-33b-gpt4-1.4.1-lxctx-PI-16384-fp16",
|
356 |
+
"FlagAlpha/Llama2-Chinese-13b-Chat",
|
357 |
+
"LLMs/WizardLM-13B-V1.0",
|
358 |
+
"chansung/gpt4-alpaca-lora-13b-decapoda-1024",
|
359 |
+
"TheBloke/wizardLM-13B-1.0-fp16",
|
360 |
+
"digitous/13B-Chimera",
|
361 |
+
"yeontaek/Platypus2xOpenOrcaxGuanaco-13B-LoRa",
|
362 |
+
"jondurbin/airoboros-l2-13b-2.1",
|
363 |
+
"Monero/WizardLM-30B-Uncensored-Guanaco-SuperCOT-30b",
|
364 |
+
"TheBloke/UltraLM-13B-fp16",
|
365 |
+
"openaccess-ai-collective/minotaur-13b-fixed",
|
366 |
+
"NousResearch/Redmond-Puffin-13B",
|
367 |
+
"KoboldAI/LLaMA2-13B-Holomax",
|
368 |
+
"Lajonbot/WizardLM-13B-V1.2-PL-lora_unload",
|
369 |
+
"yeontaek/Platypus2-13B-LoRa-v2",
|
370 |
+
"TheBloke/airoboros-13B-HF",
|
371 |
+
"jondurbin/airoboros-13b",
|
372 |
+
"jjaaaww/posi_13b",
|
373 |
+
"CoolWP/llama-2-13b-guanaco-fp16",
|
374 |
+
"yeontaek/Platypus2-13B-QLoRa",
|
375 |
+
"h2oai/h2ogpt-research-oig-oasst1-512-30b",
|
376 |
+
"dfurman/llama-2-13b-guanaco-peft",
|
377 |
+
"NousResearch/Redmond-Puffin-13B",
|
378 |
+
"pe-nlp/llama-2-13b-platypus-vicuna-wizard",
|
379 |
+
"CHIH-HUNG/llama-2-13b-dolphin_20w",
|
380 |
+
"NousResearch/Nous-Hermes-13b",
|
381 |
+
"NobodyExistsOnTheInternet/GiftedConvo13bLoraNoEconsE4",
|
382 |
+
"ehartford/Wizard-Vicuna-13B-Uncensored",
|
383 |
+
"TheBloke/Wizard-Vicuna-13B-Uncensored-HF",
|
384 |
+
"openchat/openchat_v3.2_super",
|
385 |
+
"bhenrym14/airophin-v2-13b-PI-8k-fp16",
|
386 |
+
"openaccess-ai-collective/manticore-13b",
|
387 |
+
"The-Face-Of-Goonery/Huginn-22b-Prototype",
|
388 |
+
"jphme/Llama-2-13b-chat-german",
|
389 |
+
"grimpep/llama2-28B-Airo03",
|
390 |
+
"TheBloke/Kimiko-v2-13B-fp16",
|
391 |
+
"FPHam/Free_Sydney_13b_HF",
|
392 |
+
"lmsys/vicuna-13b-v1.3",
|
393 |
+
"FelixChao/llama2-13b-math1.1",
|
394 |
+
"CalderaAI/13B-BlueMethod",
|
395 |
+
"meta-llama/Llama-2-13b-chat-hf",
|
396 |
+
"deepse/CodeUp-Llama-2-13b-chat-hf",
|
397 |
+
"WizardLM/WizardMath-13B-V1.0",
|
398 |
+
"WizardLM/WizardMath-13B-V1.0",
|
399 |
+
"HyperbeeAI/Tulpar-7b-v0",
|
400 |
+
"xxyyy123/test_qkvo_adptor",
|
401 |
+
"xxyyy123/mc_data_30k_from_platpus_orca_7b_10k_v1_lora_qkvo_rank14_v2",
|
402 |
+
"openchat/openchat_v2_w",
|
403 |
+
"FelixChao/llama2-13b-math1.1",
|
404 |
+
"psmathur/orca_mini_v3_7b",
|
405 |
+
"TehVenom/Metharme-13b-Merged",
|
406 |
+
"xxyyy123/10k_v1_lora_qkvo_rank14_v3",
|
407 |
+
"OpenAssistant/llama2-13b-orca-v2-8k-3166",
|
408 |
+
"openaccess-ai-collective/wizard-mega-13b",
|
409 |
+
"jondurbin/airoboros-13b-gpt4-1.4",
|
410 |
+
"jondurbin/airoboros-13b-gpt4-1.4-fp16",
|
411 |
+
"Monero/Manticore-13b-Chat-Pyg-Guanaco",
|
412 |
+
"FelixChao/llama2-13b-math1.2",
|
413 |
+
"chargoddard/platypus-2-22b-relora",
|
414 |
+
"FelixChao/llama2-13b-math1.2",
|
415 |
+
"Gryphe/MythoBoros-13b",
|
416 |
+
"CalderaAI/13B-Ouroboros",
|
417 |
+
"OpenAssistant/llama2-13b-orca-v2-8k-3166",
|
418 |
+
"heegyu/LIMA2-13b-hf",
|
419 |
+
"digitous/13B-HyperMantis",
|
420 |
+
"Gryphe/MythoLogic-13b",
|
421 |
+
"TheBloke/Airoboros-L2-13B-2.1-GPTQ",
|
422 |
+
"chargoddard/platypus2-22b-relora",
|
423 |
+
"openchat/openchat_v2",
|
424 |
+
"yeontaek/Platypus2-13B-IA3",
|
425 |
+
"stabilityai/StableBeluga-7B",
|
426 |
+
"circulus/Llama-2-7b-orca-v1",
|
427 |
+
"budecosystem/genz-13b-v2",
|
428 |
+
"TheBloke/gpt4-x-vicuna-13B-HF",
|
429 |
+
"NobodyExistsOnTheInternet/GiftedConvo13bLoraNoEcons",
|
430 |
+
"zarakiquemparte/zarafusionex-1.1-l2-7b",
|
431 |
+
"Lajonbot/tableBeluga-7B-instruct-pl-lora_unload",
|
432 |
+
"jondurbin/airoboros-13b-gpt4",
|
433 |
+
"gaodrew/gaodrew-gorgonzola-13b",
|
434 |
+
"jondurbin/airoboros-13b-gpt4-1.1",
|
435 |
+
"TheBloke/gpt4-alpaca-lora-13B-HF",
|
436 |
+
"zarakiquemparte/zarablendex-vq-l2-7b",
|
437 |
+
"openaccess-ai-collective/manticore-13b-chat-pyg",
|
438 |
+
"Lajonbot/Llama-2-13b-hf-instruct-pl-lora_unload",
|
439 |
+
"NobodyExistsOnTheInternet/PuffedLIMA13bQLORA",
|
440 |
+
"xxyyy123/10k_v1_lora_qkvo_rank28_v2",
|
441 |
+
"jondurbin/airoboros-l2-13b-gpt4-1.4.1",
|
442 |
+
"dhmeltzer/Llama-2-13b-hf-eli5-wiki-1024_r_64_alpha_16",
|
443 |
+
"NobodyExistsOnTheInternet/PuffedConvo13bLoraE4",
|
444 |
+
"yihan6324/llama2-7b-instructmining-40k-sharegpt",
|
445 |
+
"CHIH-HUNG/llama-2-13b-Open_Platypus_and_ccp_2.6w",
|
446 |
+
"Aeala/GPT4-x-Alpasta-13b",
|
447 |
+
"psmathur/orca_mini_v2_13b",
|
448 |
+
"YeungNLP/firefly-llama-13b",
|
449 |
+
"psmathur/orca_mini_v2_13b",
|
450 |
+
"zarakiquemparte/zarafusionix-l2-7b",
|
451 |
+
"yihan6324/llama2-7b-instructmining-60k-sharegpt",
|
452 |
+
"yihan6324/llama-2-7b-instructmining-60k-sharegpt",
|
453 |
+
"layoric/llama-2-13b-code-alpaca",
|
454 |
+
"bofenghuang/vigogne-13b-instruct",
|
455 |
+
"Lajonbot/vicuna-13b-v1.3-PL-lora_unload",
|
456 |
+
"lvkaokao/llama2-7b-hf-chat-lora-v3",
|
457 |
+
"ehartford/dolphin-llama-13b",
|
458 |
+
"YeungNLP/firefly-llama-13b-v1.2",
|
459 |
+
"TheBloke/Kimiko-13B-fp16",
|
460 |
+
"kevinpro/Vicuna-13B-CoT",
|
461 |
+
"eachadea/vicuna-13b-1.1",
|
462 |
+
"pillowtalks-ai/delta13b",
|
463 |
+
"TheBloke/vicuna-13B-1.1-HF",
|
464 |
+
"TheBloke/Vicuna-13B-CoT-fp16",
|
465 |
+
"lmsys/vicuna-13b-delta-v1.1",
|
466 |
+
"lmsys/vicuna-13b-v1.1",
|
467 |
+
"xxyyy123/20k_v1_lora_qkvo_rank14_v2",
|
468 |
+
"TheBloke/guanaco-13B-HF",
|
469 |
+
"TheBloke/vicuna-13b-v1.3.0-GPTQ",
|
470 |
+
"edor/Stable-Platypus2-mini-7B",
|
471 |
+
"totally-not-an-llm/EverythingLM-13b-V2-16k",
|
472 |
+
"zarakiquemparte/zaraxe-l2-7b",
|
473 |
+
"beaugogh/Llama2-7b-openorca-mc-v2",
|
474 |
+
"TheBloke/Nous-Hermes-13B-SuperHOT-8K-fp16",
|
475 |
+
"quantumaikr/QuantumLM",
|
476 |
+
"jondurbin/airoboros-13b-gpt4-1.2",
|
477 |
+
"TheBloke/robin-13B-v2-fp16",
|
478 |
+
"TFLai/llama-2-13b-4bit-alpaca-gpt4",
|
479 |
+
"yihan6324/llama2-7b-instructmining-orca-40k",
|
480 |
+
"dvruette/oasst-llama-13b-2-epochs",
|
481 |
+
"Open-Orca/LlongOrca-7B-16k",
|
482 |
+
"Aspik101/Nous-Hermes-13b-pl-lora_unload",
|
483 |
+
"ehartford/Samantha-1.11-CodeLlama-34b",
|
484 |
+
"nkpz/llama2-22b-chat-wizard-uncensored",
|
485 |
+
"bofenghuang/vigogne-13b-chat",
|
486 |
+
"beaugogh/Llama2-7b-openorca-mc-v1",
|
487 |
+
"OptimalScale/robin-13b-v2-delta",
|
488 |
+
"pe-nlp/llama-2-13b-vicuna-wizard",
|
489 |
+
"chargoddard/llama2-22b",
|
490 |
+
"gywy/llama2-13b-chinese-v1",
|
491 |
+
"frank098/Wizard-Vicuna-13B-juniper",
|
492 |
+
"IGeniusDev/llama13B-quant8-testv1-openorca-customdataset",
|
493 |
+
"CHIH-HUNG/llama-2-13b-huangyt_Fintune_1_17w-gate_up_down_proj",
|
494 |
+
"eachadea/vicuna-13b",
|
495 |
+
"yihan6324/llama2-7b-instructmining-orca-90k",
|
496 |
+
"chargoddard/llama2-22b-blocktriangular",
|
497 |
+
"luffycodes/mcq-vicuna-13b-v1.5",
|
498 |
+
"Yhyu13/chimera-inst-chat-13b-hf",
|
499 |
+
"luffycodes/mcq-vicuna-13b-v1.5",
|
500 |
+
"chargoddard/ypotryll-22b-epoch2-qlora",
|
501 |
+
"totally-not-an-llm/EverythingLM-13b-16k",
|
502 |
+
"luffycodes/mcq-hal-vicuna-13b-v1.5",
|
503 |
+
"openaccess-ai-collective/minotaur-13b",
|
504 |
+
"IGeniusDev/llama13B-quant8-testv1-openorca-customdataset",
|
505 |
+
"chargoddard/llama2-22b-blocktriangular",
|
506 |
+
"TFLai/Platypus2-13B-QLoRA-0.80-epoch",
|
507 |
+
"meta-llama/Llama-2-13b-hf",
|
508 |
+
"CHIH-HUNG/llama-2-13b-huangyt_FINETUNE2_3w-gate_up_down_proj",
|
509 |
+
"luffycodes/mcq-hal-vicuna-13b-v1.5",
|
510 |
+
"TheBloke/Llama-2-13B-fp16",
|
511 |
+
"TaylorAI/Flash-Llama-13B",
|
512 |
+
"shareAI/bimoGPT-llama2-13b",
|
513 |
+
"wahaha1987/llama_13b_sharegpt94k_fastchat",
|
514 |
+
"openchat/openchat_8192",
|
515 |
+
"CHIH-HUNG/llama-2-13b-huangyt_Fintune_1_17w-q_k_v_o_proj",
|
516 |
+
"dvruette/llama-13b-pretrained-sft-do2",
|
517 |
+
"CHIH-HUNG/llama-2-13b-alpaca-test",
|
518 |
+
"OpenBuddy/openbuddy-llama2-13b-v11.1-bf16",
|
519 |
+
"CHIH-HUNG/llama-2-13b-FINETUNE2_TEST_2.2w",
|
520 |
+
"project-baize/baize-v2-13b",
|
521 |
+
"jondurbin/airoboros-l2-13b-gpt4-m2.0",
|
522 |
+
"yeontaek/Platypus2xOpenOrca-13B-LoRa-v2",
|
523 |
+
"CHIH-HUNG/llama-2-13b-huangyt_FINETUNE2_3w",
|
524 |
+
"xzuyn/Alpacino-SuperCOT-13B",
|
525 |
+
"jondurbin/airoboros-l2-13b-gpt4-2.0",
|
526 |
+
"aiplanet/effi-13b",
|
527 |
+
"clibrain/Llama-2-13b-ft-instruct-es",
|
528 |
+
"CHIH-HUNG/llama-2-13b-huangyt_Fintune_1_17w",
|
529 |
+
"bofenghuang/vigogne-2-7b-instruct",
|
530 |
+
"CHIH-HUNG/llama-2-13b-huangyt_FINETUNE2_3w-q_k_v_o_proj",
|
531 |
+
"bofenghuang/vigogne-2-7b-chat",
|
532 |
+
"aiplanet/effi-13b",
|
533 |
+
"haonan-li/bactrian-x-llama-13b-merged",
|
534 |
+
"beaugogh/Llama2-7b-sharegpt4",
|
535 |
+
"HWERI/Llama2-7b-sharegpt4",
|
536 |
+
"jondurbin/airoboros-13b-gpt4-1.3",
|
537 |
+
"jondurbin/airoboros-c34b-2.1",
|
538 |
+
"junelee/wizard-vicuna-13b",
|
539 |
+
"TheBloke/wizard-vicuna-13B-HF",
|
540 |
+
"Open-Orca/OpenOrca-Preview1-13B",
|
541 |
+
"TheBloke/h2ogpt-oasst1-512-30B-HF",
|
542 |
+
"TheBloke/Llama-2-13B-GPTQ",
|
543 |
+
"camel-ai/CAMEL-13B-Combined-Data",
|
544 |
+
"lmsys/vicuna-7b-v1.5",
|
545 |
+
"lmsys/vicuna-7b-v1.5-16k",
|
546 |
+
"lmsys/vicuna-7b-v1.5",
|
547 |
+
"ausboss/llama-13b-supercot",
|
548 |
+
"TheBloke/tulu-13B-fp16",
|
549 |
+
"NousResearch/Nous-Hermes-llama-2-7b",
|
550 |
+
"jlevin/guanaco-13b-llama-2",
|
551 |
+
"lmsys/vicuna-7b-v1.5-16k",
|
552 |
+
"dvruette/llama-13b-pretrained",
|
553 |
+
"nkpz/llama2-22b-daydreamer-v3",
|
554 |
+
"dvruette/llama-13b-pretrained-dropout",
|
555 |
+
"jondurbin/airoboros-l2-13b-2.1",
|
556 |
+
"LLMs/Stable-Vicuna-13B",
|
557 |
+
"64bits/LexPodLM-13B",
|
558 |
+
"lizhuang144/llama_mirror_13b_v1.0",
|
559 |
+
"TheBloke/stable-vicuna-13B-HF",
|
560 |
+
"zarakiquemparte/zaraxls-l2-7b",
|
561 |
+
"TheBloke/Llama-2-13B-GPTQ",
|
562 |
+
"Kiddyz/testlm-3",
|
563 |
+
"migtissera/Synthia-7B",
|
564 |
+
"zarakiquemparte/zarablend-l2-7b",
|
565 |
+
"mosaicml/mpt-30b-instruct",
|
566 |
+
"PocketDoc/Dans-PileOfSets-Mk1-llama-13b-merged",
|
567 |
+
"vonjack/Qwen-LLaMAfied-HFTok-7B-Chat",
|
568 |
+
"l3utterfly/llama2-7b-layla",
|
569 |
+
"Lajonbot/vicuna-7b-v1.5-PL-lora_unload",
|
570 |
+
"heegyu/LIMA-13b-hf",
|
571 |
+
"frank098/WizardLM_13B_juniper",
|
572 |
+
"ashercn97/manatee-7b",
|
573 |
+
"chavinlo/gpt4-x-alpaca",
|
574 |
+
"PocketDoc/Dans-PersonalityEngine-13b",
|
575 |
+
"ehartford/WizardLM-1.0-Uncensored-CodeLlama-34b",
|
576 |
+
"digitous/Alpacino13b",
|
577 |
+
"edor/Hermes-Platypus2-mini-7B",
|
578 |
+
"lvkaokao/llama2-7b-hf-chat-lora-v2",
|
579 |
+
"Kiddyz/testlm-1-1",
|
580 |
+
"Kiddyz/testlm",
|
581 |
+
"Kiddyz/testlm-1",
|
582 |
+
"Kiddyz/testlm2",
|
583 |
+
"radm/Philosophy-Platypus2-13b",
|
584 |
+
"aiplanet/effi-13b",
|
585 |
+
"Harshvir/Llama-2-7B-physics",
|
586 |
+
"YeungNLP/firefly-ziya-13b",
|
587 |
+
"LinkSoul/Chinese-Llama-2-7b",
|
588 |
+
"PeanutJar/LLaMa-2-PeanutButter_v10-7B",
|
589 |
+
"OpenBuddy/openbuddy-llama2-13b-v11-bf16",
|
590 |
+
"StudentLLM/Alpagasus-2-13B-QLoRA-pipeline",
|
591 |
+
"meta-llama/Llama-2-13b-hf",
|
592 |
+
"WizardLM/WizardCoder-Python-34B-V1.0",
|
593 |
+
"dvruette/llama-13b-pretrained-sft-epoch-1",
|
594 |
+
"camel-ai/CAMEL-13B-Role-Playing-Data",
|
595 |
+
"ziqingyang/chinese-llama-2-13b",
|
596 |
+
"rombodawg/LosslessMegaCoder-llama2-7b-mini",
|
597 |
+
"TheBloke/koala-13B-HF",
|
598 |
+
"lmsys/vicuna-7b-delta-v1.1",
|
599 |
+
"eachadea/vicuna-7b-1.1",
|
600 |
+
"Ejafa/vicuna_7B_vanilla_1.1",
|
601 |
+
"lvkaokao/llama2-7b-hf-chat-lora",
|
602 |
+
"OpenBuddy/openbuddy-atom-13b-v9-bf16",
|
603 |
+
"Norquinal/llama-2-7b-claude-chat-rp",
|
604 |
+
"Danielbrdz/Barcenas-7b",
|
605 |
+
"heegyu/WizardVicuna2-13b-hf",
|
606 |
+
"meta-llama/Llama-2-7b-chat-hf",
|
607 |
+
"PeanutJar/LLaMa-2-PeanutButter_v14-7B",
|
608 |
+
"PeanutJar/LLaMa-2-PeanutButter_v4-7B",
|
609 |
+
"davzoku/cria-llama2-7b-v1.3",
|
610 |
+
"OpenBuddy/openbuddy-atom-13b-v9-bf16",
|
611 |
+
"lvkaokao/llama2-7b-hf-instruction-lora",
|
612 |
+
"Tap-M/Luna-AI-Llama2-Uncensored",
|
613 |
+
"ehartford/Samantha-1.11-7b",
|
614 |
+
"WizardLM/WizardCoder-Python-34B-V1.0",
|
615 |
+
"TheBloke/Manticore-13B-Chat-Pyg-Guanaco-SuperHOT-8K-GPTQ",
|
616 |
+
"Mikael110/llama-2-7b-guanaco-fp16",
|
617 |
+
"garage-bAInd/Platypus2-7B",
|
618 |
+
"PeanutJar/LLaMa-2-PeanutButter_v18_B-7B",
|
619 |
+
"mosaicml/mpt-30b",
|
620 |
+
"garage-bAInd/Platypus2-7B",
|
621 |
+
"huggingface/llama-13b",
|
622 |
+
"dvruette/oasst-llama-13b-1000-steps",
|
623 |
+
"jordiclive/gpt4all-alpaca-oa-codealpaca-lora-13b",
|
624 |
+
"huggyllama/llama-13b",
|
625 |
+
"Voicelab/trurl-2-7b",
|
626 |
+
"TFLai/llama-13b-4bit-alpaca",
|
627 |
+
"gywy/llama2-13b-chinese-v2",
|
628 |
+
"lmsys/longchat-13b-16k",
|
629 |
+
"Aspik101/trurl-2-7b-pl-instruct_unload",
|
630 |
+
"WizardLM/WizardMath-7B-V1.0",
|
631 |
+
"Norquinal/llama-2-7b-claude-chat",
|
632 |
+
"TheTravellingEngineer/llama2-7b-chat-hf-dpo",
|
633 |
+
"HuggingFaceH4/starchat-beta",
|
634 |
+
"joehuangx/spatial-vicuna-7b-v1.5-LoRA",
|
635 |
+
"conceptofmind/LLongMA-2-13b-16k",
|
636 |
+
"tianyil1/denas-llama2",
|
637 |
+
"lmsys/vicuna-7b-v1.3",
|
638 |
+
"conceptofmind/LLongMA-2-13b-16k",
|
639 |
+
"openchat/opencoderplus",
|
640 |
+
"ajibawa-2023/scarlett-7b",
|
641 |
+
"dhmeltzer/llama-7b-SFT_eli5_wiki65k_1024_r_64_alpha_16_merged",
|
642 |
+
"psyche/kollama2-7b-v2",
|
643 |
+
"heegyu/LIMA2-7b-hf",
|
644 |
+
"dhmeltzer/llama-7b-SFT-qlora-eli5-wiki_DPO_ds_RM_top_2_1024_r_64_alpha_16",
|
645 |
+
"abhishek/llama2guanacotest",
|
646 |
+
"jondurbin/airoboros-l2-7b-2.1",
|
647 |
+
"llama-anon/instruct-13b",
|
648 |
+
"FelixChao/vicuna-7B-physics",
|
649 |
+
"Aspik101/Llama-2-7b-hf-instruct-pl-lora_unload",
|
650 |
+
"shibing624/chinese-alpaca-plus-13b-hf",
|
651 |
+
"davzoku/cria-llama2-7b-v1.3_peft",
|
652 |
+
"quantumaikr/llama-2-7b-hf-guanaco-1k",
|
653 |
+
"togethercomputer/Llama-2-7B-32K-Instruct",
|
654 |
+
"sia-ai/llama-2-7b-1-percent-open-orca-1000-steps-v0",
|
655 |
+
"TheTravellingEngineer/llama2-7b-hf-guanaco",
|
656 |
+
"Lajonbot/Llama-2-7b-chat-hf-instruct-pl-lora_unload",
|
657 |
+
"jondurbin/airoboros-l2-7b-gpt4-1.4.1",
|
658 |
+
"wahaha1987/llama_7b_sharegpt94k_fastchat",
|
659 |
+
"FelixChao/vicuna-7B-chemical",
|
660 |
+
"TinyPixel/llama2-7b-oa",
|
661 |
+
"chaoyi-wu/MedLLaMA_13B",
|
662 |
+
"edor/Platypus2-mini-7B",
|
663 |
+
"RoversX/llama-2-7b-hf-small-shards-Samantha-V1-SFT",
|
664 |
+
"venkycs/llama-v2-7b-32kC-Security",
|
665 |
+
"psyche/kollama2-7b",
|
666 |
+
"Fredithefish/Guanaco-7B-Uncensored",
|
667 |
+
"TheTravellingEngineer/llama2-7b-chat-hf-guanaco",
|
668 |
+
"ehartford/WizardLM-13B-Uncensored",
|
669 |
+
"PocketDoc/Dans-CreepingSenseOfDoom",
|
670 |
+
"wenge-research/yayi-7b-llama2",
|
671 |
+
"georgesung/llama2_7b_chat_uncensored",
|
672 |
+
"TinyPixel/llama2-7b-instruct",
|
673 |
+
"quantumaikr/QuantumLM-7B",
|
674 |
+
"xzuyn/MedicWizard-7B",
|
675 |
+
"wenge-research/yayi-7b-llama2",
|
676 |
+
"TinyPixel/lima-test",
|
677 |
+
"elyza/ELYZA-japanese-Llama-2-7b-instruct",
|
678 |
+
"lgaalves/llama-2-7b-hf_open-platypus",
|
679 |
+
"ziqingyang/chinese-alpaca-2-7b",
|
680 |
+
"TehVenom/Pygmalion-Vicuna-1.1-7b",
|
681 |
+
"meta-llama/Llama-2-7b-hf",
|
682 |
+
"bongchoi/test-llama2-7b",
|
683 |
+
"TaylorAI/Flash-Llama-7B",
|
684 |
+
"TheTravellingEngineer/llama2-7b-chat-hf-v2",
|
685 |
+
"TheTravellingEngineer/llama2-7b-chat-hf-v4",
|
686 |
+
"kashif/stack-llama-2",
|
687 |
+
"PeanutJar/LLaMa-2-PeanutButter_v18_A-7B",
|
688 |
+
"ToolBench/ToolLLaMA-7b-LoRA",
|
689 |
+
"Monero/WizardLM-13b-OpenAssistant-Uncensored",
|
690 |
+
"TheTravellingEngineer/llama2-7b-chat-hf-v2",
|
691 |
+
"TheTravellingEngineer/llama2-7b-chat-hf-v4",
|
692 |
+
"mrm8488/llama-2-coder-7b",
|
693 |
+
"elyza/ELYZA-japanese-Llama-2-7b-fast-instruct",
|
694 |
+
"clibrain/Llama-2-7b-ft-instruct-es",
|
695 |
+
"medalpaca/medalpaca-7b",
|
696 |
+
"TheBloke/tulu-7B-fp16",
|
697 |
+
"OpenBuddy/openbuddy-openllama-13b-v7-fp16",
|
698 |
+
"TaylorAI/FLAN-Llama-7B-2_Llama2-7B-Flash_868_full_model",
|
699 |
+
"Aspik101/vicuna-7b-v1.3-instruct-pl-lora_unload",
|
700 |
+
"jondurbin/airoboros-l2-7b-gpt4-2.0",
|
701 |
+
"dhmeltzer/llama-7b-SFT_ds_eli5_1024_r_64_alpha_16_merged",
|
702 |
+
"GOAT-AI/GOAT-7B-Community",
|
703 |
+
"AtomEchoAI/AtomGPT_56k",
|
704 |
+
"julianweng/Llama-2-7b-chat-orcah",
|
705 |
+
"TehVenom/Pygmalion-13b-Merged",
|
706 |
+
"jondurbin/airoboros-7b-gpt4-1.1",
|
707 |
+
"dhmeltzer/llama-7b-SFT_ds_wiki65k_1024_r_64_alpha_16_merged",
|
708 |
+
"bofenghuang/vigogne-7b-chat",
|
709 |
+
"lmsys/longchat-7b-v1.5-32k",
|
710 |
+
"jondurbin/airoboros-l2-7b-gpt4-m2.0",
|
711 |
+
"synapsoft/Llama-2-7b-chat-hf-flan2022-1.2M",
|
712 |
+
"jondurbin/airoboros-7b-gpt4-1.4",
|
713 |
+
"Charlie911/vicuna-7b-v1.5-lora-mctaco",
|
714 |
+
"yihan6324/instructmining-platypus-15k",
|
715 |
+
"meta-llama/Llama-2-7b-hf",
|
716 |
+
"TheTravellingEngineer/llama2-7b-chat-hf-v3",
|
717 |
+
"quantumaikr/KoreanLM-hf",
|
718 |
+
"openthaigpt/openthaigpt-1.0.0-alpha-7b-chat-ckpt-hf",
|
719 |
+
"TheBloke/Llama-2-7B-GPTQ",
|
720 |
+
"TheBloke/Llama-2-7B-GPTQ",
|
721 |
+
"LLMs/AlpacaGPT4-7B-elina",
|
722 |
+
"ehartford/Wizard-Vicuna-7B-Uncensored",
|
723 |
+
"TheBloke/Wizard-Vicuna-7B-Uncensored-HF",
|
724 |
+
"TheTravellingEngineer/llama2-7b-chat-hf-v3",
|
725 |
+
"golaxy/gowizardlm",
|
726 |
+
"ehartford/dolphin-llama2-7b",
|
727 |
+
"CHIH-HUNG/llama-2-7b-dolphin_10w-test",
|
728 |
+
"mncai/chatdoctor",
|
729 |
+
"psyche/kollama2-7b-v3",
|
730 |
+
"jondurbin/airoboros-7b-gpt4",
|
731 |
+
"jondurbin/airoboros-7b",
|
732 |
+
"TheBloke/airoboros-7b-gpt4-fp16",
|
733 |
+
"mosaicml/mpt-7b-8k-chat",
|
734 |
+
"elyza/ELYZA-japanese-Llama-2-7b",
|
735 |
+
"bofenghuang/vigogne-7b-instruct",
|
736 |
+
"jxhong/CAlign-alpaca-7b",
|
737 |
+
"golaxy/goims",
|
738 |
+
"jondurbin/airoboros-7b-gpt4-1.2",
|
739 |
+
"jphme/orca_mini_v2_ger_7b",
|
740 |
+
"psmathur/orca_mini_v2_7b",
|
741 |
+
"notstoic/PygmalionCoT-7b",
|
742 |
+
"golaxy/gogpt2-13b",
|
743 |
+
"golaxy/gogpt2-13b-chat",
|
744 |
+
"togethercomputer/LLaMA-2-7B-32K",
|
745 |
+
"TheBloke/wizardLM-7B-HF",
|
746 |
+
"keyfan/vicuna-chinese-replication-v1.1",
|
747 |
+
"golaxy/gogpt2-7b",
|
748 |
+
"aiplanet/effi-7b",
|
749 |
+
"arver/llama7b-qlora",
|
750 |
+
"titan087/OpenLlama13B-Guanaco",
|
751 |
+
"chavinlo/alpaca-native",
|
752 |
+
"project-baize/baize-healthcare-lora-7B",
|
753 |
+
"AlpinDale/pygmalion-instruct",
|
754 |
+
"openlm-research/open_llama_13b",
|
755 |
+
"jondurbin/airoboros-7b-gpt4-1.3",
|
756 |
+
"elyza/ELYZA-japanese-Llama-2-7b-fast",
|
757 |
+
"jondurbin/airoboros-gpt-3.5-turbo-100k-7b",
|
758 |
+
"uukuguy/speechless-codellama-orca-13b",
|
759 |
+
"bigcode/starcoderplus",
|
760 |
+
"TheBloke/guanaco-7B-HF",
|
761 |
+
"Neko-Institute-of-Science/metharme-7b",
|
762 |
+
"TigerResearch/tigerbot-7b-base",
|
763 |
+
"golaxy/gogpt-7b",
|
764 |
+
"togethercomputer/LLaMA-2-7B-32K",
|
765 |
+
"yhyhy3/open_llama_7b_v2_med_instruct",
|
766 |
+
"ajibawa-2023/carl-7b",
|
767 |
+
"stabilityai/stablelm-base-alpha-7b-v2",
|
768 |
+
"conceptofmind/LLongMA-2-7b-16k",
|
769 |
+
"TehVenom/Pygmalion_AlpacaLora-7b",
|
770 |
+
"jondurbin/airoboros-7b-gpt4-1.4.1-qlora",
|
771 |
+
"wannaphong/openthaigpt-0.1.0-beta-full-model_for_open_llm_leaderboard",
|
772 |
+
"ausboss/llama7b-wizardlm-unfiltered",
|
773 |
+
"project-baize/baize-v2-7b",
|
774 |
+
"LMFlow/Robin-v2",
|
775 |
+
"HanningZhang/Robin-v2",
|
776 |
+
"LMFlow/Robin-7b-v2",
|
777 |
+
"OptimalScale/robin-7b-v2-delta",
|
778 |
+
"uukuguy/speechless-codellama-platypus-13b",
|
779 |
+
"jerryjalapeno/nart-100k-7b",
|
780 |
+
"wenge-research/yayi-13b-llama2",
|
781 |
+
"fireballoon/baichuan-vicuna-chinese-7b",
|
782 |
+
"jlevin/guanaco-unchained-llama-2-7b",
|
783 |
+
"csitfun/llama-7b-logicot",
|
784 |
+
"DevaMalla/llama7b_alpaca_1gpu_bf16",
|
785 |
+
"WeOpenML/PandaLM-Alpaca-7B-v1",
|
786 |
+
"illuin/test-custom-llama",
|
787 |
+
"yeontaek/WizardCoder-Python-13B-LoRa",
|
788 |
+
"ashercn97/giraffe-7b",
|
789 |
+
"mosaicml/mpt-7b-chat",
|
790 |
+
"abhishek/autotrain-llama-alpaca-peft-52508123785",
|
791 |
+
"Neko-Institute-of-Science/pygmalion-7b",
|
792 |
+
"TFLai/llama-7b-4bit-alpaca",
|
793 |
+
"huggingface/llama-7b",
|
794 |
+
"TheBloke/Planner-7B-fp16",
|
795 |
+
"shibing624/chinese-llama-plus-13b-hf",
|
796 |
+
"AGI-inc/lora_moe_7b_baseline",
|
797 |
+
"DevaMalla/llama-base-7b",
|
798 |
+
"AGI-inc/lora_moe_7b",
|
799 |
+
"togethercomputer/GPT-JT-6B-v0",
|
800 |
+
"ehartford/WizardLM-7B-Uncensored",
|
801 |
+
"shibing624/chinese-alpaca-plus-7b-hf",
|
802 |
+
"beomi/llama-2-ko-7b",
|
803 |
+
"mosaicml/mpt-7b-8k-instruct",
|
804 |
+
"Enno-Ai/ennodata-7b",
|
805 |
+
"mosaicml/mpt-7b-instruct",
|
806 |
+
"facebook/opt-iml-max-30b",
|
807 |
+
"WeOpenML/Alpaca-7B-v1",
|
808 |
+
"TheBloke/Project-Baize-v2-7B-GPTQ",
|
809 |
+
"codellama/CodeLlama-13b-Instruct-hf",
|
810 |
+
"TheBloke/CodeLlama-13B-Instruct-fp16",
|
811 |
+
"facebook/galactica-30b",
|
812 |
+
"FreedomIntelligence/phoenix-inst-chat-7b",
|
813 |
+
"openlm-research/open_llama_7b_v2",
|
814 |
+
"GeorgiaTechResearchInstitute/galpaca-30b",
|
815 |
+
"THUDM/chatglm2-6b",
|
816 |
+
"togethercomputer/GPT-JT-6B-v1",
|
817 |
+
"TheBloke/koala-7B-HF",
|
818 |
+
"nathan0/mpt_delta_tuned_model_v3",
|
819 |
+
"nathan0/mpt_delta_tuned_model_v2",
|
820 |
+
"GeorgiaTechResearchInstitute/galpaca-30b",
|
821 |
+
"JosephusCheung/Guanaco",
|
822 |
+
"shareAI/CodeLLaMA-chat-13b-Chinese",
|
823 |
+
"TigerResearch/tigerbot-7b-sft",
|
824 |
+
"Writer/InstructPalmyra-20b",
|
825 |
+
"OpenAssistant/codellama-13b-oasst-sft-v10",
|
826 |
+
"bigscience/bloomz-7b1-mt",
|
827 |
+
"nathan0/mpt_delta_tuned_model_v3",
|
828 |
+
"VMware/open-llama-7b-open-instruct",
|
829 |
+
"baichuan-inc/Baichuan-7B",
|
830 |
+
"anas-awadalla/mpt-7b",
|
831 |
+
"mosaicml/mpt-7b",
|
832 |
+
"bigscience/bloomz-7b1",
|
833 |
+
"ziqingyang/chinese-llama-2-7b",
|
834 |
+
"OpenAssistant/codellama-13b-oasst-sft-v10",
|
835 |
+
"wenge-research/yayi-7b",
|
836 |
+
"tiiuae/falcon-7b",
|
837 |
+
"togethercomputer/RedPajama-INCITE-Instruct-7B-v0.1",
|
838 |
+
"togethercomputer/RedPajama-INCITE-7B-Instruct",
|
839 |
+
"TheBloke/landmark-attention-llama7b-fp16",
|
840 |
+
"togethercomputer/GPT-JT-Moderation-6B",
|
841 |
+
"h2oai/h2ogpt-gm-oasst1-en-1024-20b",
|
842 |
+
"dvruette/gpt-neox-20b-full-precision",
|
843 |
+
"TehVenom/Moderator-Chan_GPT-JT-6b",
|
844 |
+
"dvruette/oasst-gpt-neox-20b-1000-steps",
|
845 |
+
"AlekseyKorshuk/pygmalion-6b-vicuna-chatml",
|
846 |
+
"facebook/opt-66b",
|
847 |
+
"Salesforce/codegen-16B-nl",
|
848 |
+
"Vmware/open-llama-7b-v2-open-instruct",
|
849 |
+
"mosaicml/mpt-7b-storywriter",
|
850 |
+
"acrastt/Marx-3B-V2",
|
851 |
+
"openlm-research/open_llama_7b",
|
852 |
+
"Fredithefish/ReasonixPajama-3B-HF",
|
853 |
+
"togethercomputer/GPT-NeoXT-Chat-Base-20B",
|
854 |
+
"psmathur/orca_mini_13b",
|
855 |
+
"RWKV/rwkv-raven-14b",
|
856 |
+
"h2oai/h2ogpt-oasst1-512-20b",
|
857 |
+
"acrastt/Marx-3B",
|
858 |
+
"klosax/open_llama_13b_600bt_preview",
|
859 |
+
"synapsoft/Llama-2-7b-hf-flan2022-1.2M",
|
860 |
+
"OpenAssistant/oasst-sft-1-pythia-12b",
|
861 |
+
"golaxy/gogpt-7b-bloom",
|
862 |
+
"Writer/palmyra-large",
|
863 |
+
"psmathur/orca_mini_7b",
|
864 |
+
"dvruette/oasst-pythia-12b-6000-steps",
|
865 |
+
"NousResearch/CodeLlama-13b-hf",
|
866 |
+
"codellama/CodeLlama-13b-hf",
|
867 |
+
"h2oai/h2ogpt-gm-oasst1-multilang-1024-20b",
|
868 |
+
"VMware/open-llama-0.7T-7B-open-instruct-v1.1",
|
869 |
+
"dvruette/oasst-pythia-12b-flash-attn-5000-steps",
|
870 |
+
"dvruette/oasst-gpt-neox-20b-3000-steps",
|
871 |
+
"RobbeD/OpenLlama-Platypus-3B",
|
872 |
+
"facebook/opt-30b",
|
873 |
+
"acrastt/Puma-3B",
|
874 |
+
"OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5",
|
875 |
+
"dvruette/oasst-pythia-12b-pretrained-sft",
|
876 |
+
"digitous/GPT-R",
|
877 |
+
"acrastt/Griffin-3B",
|
878 |
+
"togethercomputer/RedPajama-INCITE-Base-7B-v0.1",
|
879 |
+
"togethercomputer/RedPajama-INCITE-7B-Base",
|
880 |
+
"CobraMamba/mamba-gpt-3b-v3",
|
881 |
+
"Danielbrdz/CodeBarcenas-7b",
|
882 |
+
"l3utterfly/open-llama-3b-v2-layla",
|
883 |
+
"CobraMamba/mamba-gpt-3b-v2",
|
884 |
+
"OpenAssistant/pythia-12b-sft-v8-7k-steps",
|
885 |
+
"KoboldAI/GPT-NeoX-20B-Erebus",
|
886 |
+
"RobbeD/Orca-Platypus-3B",
|
887 |
+
"h2oai/h2ogpt-gm-oasst1-en-1024-12b",
|
888 |
+
"OpenAssistant/pythia-12b-sft-v8-2.5k-steps",
|
889 |
+
"AlekseyKorshuk/chatml-pyg-v1",
|
890 |
+
"togethercomputer/RedPajama-INCITE-Chat-7B-v0.1",
|
891 |
+
"togethercomputer/RedPajama-INCITE-7B-Chat",
|
892 |
+
"digitous/Javelin-R",
|
893 |
+
"dvruette/oasst-pythia-12b-reference",
|
894 |
+
"EleutherAI/gpt-neox-20b",
|
895 |
+
"KoboldAI/fairseq-dense-13B",
|
896 |
+
"OpenAssistant/pythia-12b-sft-v8-rlhf-2k-steps",
|
897 |
+
"codellama/CodeLlama-7b-Instruct-hf",
|
898 |
+
"digitous/Javelin-GPTJ",
|
899 |
+
"KoboldAI/GPT-NeoX-20B-Skein",
|
900 |
+
"digitous/Javalion-R",
|
901 |
+
"h2oai/h2ogpt-oasst1-512-12b",
|
902 |
+
"acrastt/Bean-3B",
|
903 |
+
"KoboldAI/GPT-J-6B-Skein",
|
904 |
+
"nomic-ai/gpt4all-j",
|
905 |
+
"databricks/dolly-v2-12b",
|
906 |
+
"TehVenom/Dolly_Shygmalion-6b-Dev_V8P2",
|
907 |
+
"databricks/dolly-v2-7b",
|
908 |
+
"Aspik101/WizardVicuna-Uncensored-3B-instruct-PL-lora_unload",
|
909 |
+
"digitous/Adventien-GPTJ",
|
910 |
+
"openlm-research/open_llama_3b_v2",
|
911 |
+
"RWKV/rwkv-4-14b-pile",
|
912 |
+
"Lazycuber/Janemalion-6B",
|
913 |
+
"OpenAssistant/pythia-12b-pre-v8-12.5k-steps",
|
914 |
+
"digitous/Janin-R",
|
915 |
+
"kfkas/Llama-2-ko-7b-Chat",
|
916 |
+
"heegyu/WizardVicuna-Uncensored-3B-0719",
|
917 |
+
"h2oai/h2ogpt-gm-oasst1-en-1024-open-llama-7b-preview-400bt",
|
918 |
+
"TaylorAI/Flash-Llama-3B",
|
919 |
+
"kfkas/Llama-2-ko-7b-Chat",
|
920 |
+
"digitous/Skegma-GPTJ",
|
921 |
+
"digitous/Javalion-GPTJ",
|
922 |
+
"Pirr/pythia-13b-deduped-green_devil",
|
923 |
+
"TehVenom/PPO_Shygmalion-V8p4_Dev-6b",
|
924 |
+
"dvruette/oasst-pythia-6.9b-4000-steps",
|
925 |
+
"heegyu/WizardVicuna-3B-0719",
|
926 |
+
"psmathur/orca_mini_3b",
|
927 |
+
"OpenAssistant/galactica-6.7b-finetuned",
|
928 |
+
"frank098/orca_mini_3b_juniper",
|
929 |
+
"PygmalionAI/pygmalion-6b",
|
930 |
+
"TehVenom/PPO_Pygway-V8p4_Dev-6b",
|
931 |
+
"TFLai/gpt-neox-20b-4bit-alpaca",
|
932 |
+
"Corianas/gpt-j-6B-Dolly",
|
933 |
+
"TehVenom/Dolly_Shygmalion-6b",
|
934 |
+
"digitous/Janin-GPTJ",
|
935 |
+
"TehVenom/GPT-J-Pyg_PPO-6B-Dev-V8p4",
|
936 |
+
"EleutherAI/gpt-j-6b",
|
937 |
+
"KoboldAI/GPT-J-6B-Shinen",
|
938 |
+
"TehVenom/Dolly_Malion-6b",
|
939 |
+
"TehVenom/ChanMalion",
|
940 |
+
"Salesforce/codegen-6B-nl",
|
941 |
+
"Fredithefish/RedPajama-INCITE-Chat-3B-Instruction-Tuning-with-GPT-4",
|
942 |
+
"KoboldAI/GPT-J-6B-Janeway",
|
943 |
+
"togethercomputer/RedPajama-INCITE-Chat-3B-v1",
|
944 |
+
"togethercomputer/Pythia-Chat-Base-7B",
|
945 |
+
"heegyu/RedTulu-Uncensored-3B-0719",
|
946 |
+
"KoboldAI/PPO_Pygway-6b-Mix",
|
947 |
+
"KoboldAI/OPT-13B-Erebus",
|
948 |
+
"KoboldAI/fairseq-dense-6.7B",
|
949 |
+
"EleutherAI/pythia-12b-deduped",
|
950 |
+
"pszemraj/pythia-6.9b-HC3",
|
951 |
+
"Fredithefish/Guanaco-3B-Uncensored-v2",
|
952 |
+
"facebook/opt-13b",
|
953 |
+
"TehVenom/GPT-J-Pyg_PPO-6B",
|
954 |
+
"EleutherAI/pythia-6.9b-deduped",
|
955 |
+
"Devio/test-1400",
|
956 |
+
"Fredithefish/Guanaco-3B-Uncensored",
|
957 |
+
"codellama/CodeLlama-7b-hf",
|
958 |
+
"acrastt/RedPajama-INCITE-Chat-Instruct-3B-V1",
|
959 |
+
"Fredithefish/ScarletPajama-3B-HF",
|
960 |
+
"KoboldAI/OPT-13B-Nerybus-Mix",
|
961 |
+
"YeungNLP/firefly-bloom-7b1",
|
962 |
+
"DanielSc4/RedPajama-INCITE-Chat-3B-v1-RL-LoRA-8bit-test1",
|
963 |
+
"klosax/open_llama_7b_400bt_preview",
|
964 |
+
"KoboldAI/OPT-13B-Nerys-v2",
|
965 |
+
"TehVenom/PPO_Shygmalion-6b",
|
966 |
+
"amazon/LightGPT",
|
967 |
+
"KnutJaegersberg/black_goo_recipe_c",
|
968 |
+
"NousResearch/CodeLlama-7b-hf",
|
969 |
+
"togethercomputer/RedPajama-INCITE-Instruct-3B-v1",
|
970 |
+
"heegyu/WizardVicuna-open-llama-3b-v2",
|
971 |
+
"bigscience/bloom-7b1",
|
972 |
+
"Devio/test-22B",
|
973 |
+
"RWKV/rwkv-raven-7b",
|
974 |
+
"hakurei/instruct-12b",
|
975 |
+
"CobraMamba/mamba-gpt-3b",
|
976 |
+
"KnutJaegersberg/black_goo_recipe_a",
|
977 |
+
"acrastt/OmegLLaMA-3B",
|
978 |
+
"codellama/CodeLlama-7b-Instruct-hf",
|
979 |
+
"h2oai/h2ogpt-oig-oasst1-512-6_9b",
|
980 |
+
"KoboldAI/OPT-6.7B-Erebus",
|
981 |
+
"facebook/opt-6.7b",
|
982 |
+
"KnutJaegersberg/black_goo_recipe_d",
|
983 |
+
"KnutJaegersberg/LLongMA-3b-LIMA",
|
984 |
+
"KnutJaegersberg/black_goo_recipe_b",
|
985 |
+
"KoboldAI/OPT-6.7B-Nerybus-Mix",
|
986 |
+
"health360/Healix-3B",
|
987 |
+
"EleutherAI/pythia-12b",
|
988 |
+
"Fredithefish/RedPajama-INCITE-Chat-3B-ShareGPT-11K",
|
989 |
+
"GeorgiaTechResearchInstitute/galactica-6.7b-evol-instruct-70k",
|
990 |
+
"h2oai/h2ogpt-oig-oasst1-256-6_9b",
|
991 |
+
"ikala/bloom-zh-3b-chat",
|
992 |
+
"Taekyoon/llama2-ko-7b-test",
|
993 |
+
"anhnv125/pygmalion-6b-roleplay",
|
994 |
+
"TehVenom/DiffMerge_Pygmalion_Main-onto-V8P4",
|
995 |
+
"KoboldAI/OPT-6B-nerys-v2",
|
996 |
+
"Lazycuber/pyg-instruct-wizardlm",
|
997 |
+
"Devio/testC",
|
998 |
+
"KoboldAI/OPT-30B-Erebus",
|
999 |
+
"Fredithefish/CrimsonPajama",
|
1000 |
+
"togethercomputer/RedPajama-INCITE-Base-3B-v1",
|
1001 |
+
"bigscience/bloomz-3b",
|
1002 |
+
"conceptofmind/Open-LLongMA-3b",
|
1003 |
+
"RWKV/rwkv-4-7b-pile",
|
1004 |
+
"openlm-research/open_llama_3b",
|
1005 |
+
"ewof/koishi-instruct-3b",
|
1006 |
+
"DanielSc4/RedPajama-INCITE-Chat-3B-v1-FT-LoRA-8bit-test1",
|
1007 |
+
"cerebras/Cerebras-GPT-13B",
|
1008 |
+
"EleutherAI/pythia-6.7b",
|
1009 |
+
"aisquared/chopt-2_7b",
|
1010 |
+
"Azure99/blossom-v1-3b",
|
1011 |
+
"PSanni/Deer-3b",
|
1012 |
+
"bertin-project/bertin-gpt-j-6B-alpaca",
|
1013 |
+
"OpenBuddy/openbuddy-openllama-3b-v10-bf16",
|
1014 |
+
"KoboldAI/fairseq-dense-2.7B",
|
1015 |
+
"ehartford/CodeLlama-34b-Instruct-hf",
|
1016 |
+
"codellama/CodeLlama-34b-Instruct-hf",
|
1017 |
+
"TheBloke/CodeLlama-34B-Instruct-fp16",
|
1018 |
+
"h2oai/h2ogpt-gm-oasst1-en-2048-open-llama-7b-preview-300bt-v2",
|
1019 |
+
"openlm-research/open_llama_7b_700bt_preview",
|
1020 |
+
"NbAiLab/nb-gpt-j-6B-alpaca",
|
1021 |
+
"KoboldAI/OPT-2.7B-Erebus",
|
1022 |
+
"Writer/camel-5b-hf",
|
1023 |
+
"EleutherAI/pythia-2.7b",
|
1024 |
+
"facebook/xglm-7.5B",
|
1025 |
+
"EleutherAI/pythia-2.8b-deduped",
|
1026 |
+
"klosax/open_llama_3b_350bt_preview",
|
1027 |
+
"klosax/openllama-3b-350bt",
|
1028 |
+
"KoboldAI/OPT-2.7B-Nerybus-Mix",
|
1029 |
+
"KoboldAI/GPT-J-6B-Adventure",
|
1030 |
+
"cerebras/Cerebras-GPT-6.7B",
|
1031 |
+
"TFLai/pythia-2.8b-4bit-alpaca",
|
1032 |
+
"facebook/opt-2.7b",
|
1033 |
+
"KoboldAI/OPT-2.7B-Nerys-v2",
|
1034 |
+
"bigscience/bloom-3b",
|
1035 |
+
"Devio/test100",
|
1036 |
+
"RWKV/rwkv-raven-3b",
|
1037 |
+
"Azure99/blossom-v2-3b",
|
1038 |
+
"codellama/CodeLlama-34b-Python-hf",
|
1039 |
+
"bhenrym14/airoboros-33b-gpt4-1.4.1-PI-8192-fp16",
|
1040 |
+
"EleutherAI/gpt-neo-2.7B",
|
1041 |
+
"danielhanchen/open_llama_3b_600bt_preview",
|
1042 |
+
"HuggingFaceH4/starchat-alpha",
|
1043 |
+
"pythainlp/wangchanglm-7.5B-sft-en-sharded",
|
1044 |
+
"beaugogh/pythia-1.4b-deduped-sharegpt",
|
1045 |
+
"HWERI/pythia-1.4b-deduped-sharegpt",
|
1046 |
+
"OpenAssistant/stablelm-7b-sft-v7-epoch-3",
|
1047 |
+
"codellama/CodeLlama-7b-Python-hf",
|
1048 |
+
"aisquared/chopt-1_3b",
|
1049 |
+
"PygmalionAI/metharme-1.3b",
|
1050 |
+
"Linly-AI/Chinese-LLaMA-2-13B-hf",
|
1051 |
+
"chargoddard/llama-2-34b-uncode",
|
1052 |
+
"RWKV/rwkv-4-3b-pile",
|
1053 |
+
"pythainlp/wangchanglm-7.5B-sft-enth",
|
1054 |
+
"MBZUAI/LaMini-GPT-1.5B",
|
1055 |
+
"Writer/palmyra-base",
|
1056 |
+
"KoboldAI/fairseq-dense-1.3B",
|
1057 |
+
"EleutherAI/pythia-1.4b-deduped",
|
1058 |
+
"MBZUAI/lamini-neo-1.3b",
|
1059 |
+
"h2oai/h2ogpt-gm-oasst1-en-2048-open-llama-7b-preview-300bt",
|
1060 |
+
"sartmis1/starcoder-finetune-openapi",
|
1061 |
+
"MayaPH/opt-flan-iml-6.7b",
|
1062 |
+
"facebook/xglm-4.5B",
|
1063 |
+
"WizardLM/WizardCoder-15B-V1.0",
|
1064 |
+
"facebook/opt-iml-max-1.3b",
|
1065 |
+
"stabilityai/stablelm-tuned-alpha-7b",
|
1066 |
+
"aisquared/dlite-v2-1_5b",
|
1067 |
+
"stabilityai/stablelm-base-alpha-7b",
|
1068 |
+
"sartmis1/starcoder-finetune-selfinstruct",
|
1069 |
+
"lizhuang144/starcoder_mirror",
|
1070 |
+
"bigcode/starcoder",
|
1071 |
+
"TheBloke/CodeLlama-34B-Python-fp16",
|
1072 |
+
"open-llm-leaderboard/bloomz-1b7-4bit-alpaca-auto-eval-adapter-applied",
|
1073 |
+
"ehartford/CodeLlama-34b-Python-hf",
|
1074 |
+
"codellama/CodeLlama-7b-Python-hf",
|
1075 |
+
"GeorgiaTechResearchInstitute/starcoder-gpteacher-code-instruct",
|
1076 |
+
"LoupGarou/WizardCoder-Guanaco-15B-V1.0",
|
1077 |
+
"golaxy/gogpt-3b-bloom",
|
1078 |
+
"EleutherAI/pythia-1.3b",
|
1079 |
+
"codellama/CodeLlama-13b-Python-hf",
|
1080 |
+
"hakurei/lotus-12B",
|
1081 |
+
"NYTK/PULI-GPTrio",
|
1082 |
+
"facebook/opt-1.3b",
|
1083 |
+
"TheBloke/CodeLlama-13B-Python-fp16",
|
1084 |
+
"codellama/CodeLlama-13b-Python-hf",
|
1085 |
+
"RWKV/rwkv-raven-1b5",
|
1086 |
+
"PygmalionAI/pygmalion-2.7b",
|
1087 |
+
"bigscience/bloom-1b7",
|
1088 |
+
"gpt2-xl",
|
1089 |
+
"LoupGarou/WizardCoder-Guanaco-15B-V1.1",
|
1090 |
+
"RWKV/rwkv-4-1b5-pile",
|
1091 |
+
"codellama/CodeLlama-34b-hf",
|
1092 |
+
"NousResearch/CodeLlama-34b-hf",
|
1093 |
+
"rinna/bilingual-gpt-neox-4b-8k",
|
1094 |
+
"lxe/Cerebras-GPT-2.7B-Alpaca-SP",
|
1095 |
+
"cerebras/Cerebras-GPT-2.7B",
|
1096 |
+
"jzjiao/opt-1.3b-rlhf",
|
1097 |
+
"EleutherAI/gpt-neo-1.3B",
|
1098 |
+
"aisquared/dlite-v1-1_5b",
|
1099 |
+
"Corianas/Quokka_2.7b",
|
1100 |
+
"MrNJK/gpt2-xl-sft",
|
1101 |
+
"facebook/galactica-1.3b",
|
1102 |
+
"aisquared/dlite-v2-774m",
|
1103 |
+
"EleutherAI/pythia-1b-deduped",
|
1104 |
+
"Kunhao/pile-7b-250b-tokens",
|
1105 |
+
"w601sxs/b1ade-1b",
|
1106 |
+
"rinna/bilingual-gpt-neox-4b",
|
1107 |
+
"shaohang/SparseOPT-1.3B",
|
1108 |
+
"shaohang/Sparse0.5_OPT-1.3",
|
1109 |
+
"EleutherAI/polyglot-ko-12.8b",
|
1110 |
+
"Salesforce/codegen-6B-multi",
|
1111 |
+
"bigscience/bloom-1b1",
|
1112 |
+
"TFLai/gpt-neo-1.3B-4bit-alpaca",
|
1113 |
+
"FabbriSimo01/Bloom_1b_Quantized",
|
1114 |
+
"MBZUAI/LaMini-GPT-774M",
|
1115 |
+
"Locutusque/gpt2-large-conversational",
|
1116 |
+
"Devio/test-3b",
|
1117 |
+
"stabilityai/stablelm-tuned-alpha-3b",
|
1118 |
+
"PygmalionAI/pygmalion-1.3b",
|
1119 |
+
"KoboldAI/fairseq-dense-355M",
|
1120 |
+
"Rachneet/gpt2-xl-alpaca",
|
1121 |
+
"gpt2-large",
|
1122 |
+
"Mikivis/gpt2-large-lora-sft",
|
1123 |
+
"stabilityai/stablelm-base-alpha-3b",
|
1124 |
+
"gpt2-medium",
|
1125 |
+
"Kunhao/pile-7b",
|
1126 |
+
"aisquared/dlite-v1-774m",
|
1127 |
+
"aisquared/dlite-v2-355m",
|
1128 |
+
"YeungNLP/firefly-bloom-2b6-v2",
|
1129 |
+
"KnutJaegersberg/gpt-2-xl-EvolInstruct",
|
1130 |
+
"KnutJaegersberg/galactica-orca-wizardlm-1.3b",
|
1131 |
+
"cerebras/Cerebras-GPT-1.3B",
|
1132 |
+
"FabbriSimo01/Cerebras_1.3b_Quantized",
|
1133 |
+
"facebook/xglm-1.7B",
|
1134 |
+
"EleutherAI/pythia-410m-deduped",
|
1135 |
+
"TheBloke/GPlatty-30B-SuperHOT-8K-fp16",
|
1136 |
+
"DataLinguistic/DataLinguistic-34B-V1.0",
|
1137 |
+
"Corianas/Quokka_1.3b",
|
1138 |
+
"TheTravellingEngineer/bloom-560m-RLHF-v2",
|
1139 |
+
"Corianas/1.3b",
|
1140 |
+
"RWKV/rwkv-4-430m-pile",
|
1141 |
+
"porkorbeef/Llama-2-13b-sf",
|
1142 |
+
"xhyi/PT_GPTNEO350_ATG",
|
1143 |
+
"TheBloke/Wizard-Vicuna-13B-Uncensored-GPTQ",
|
1144 |
+
"bigscience/bloomz-560m",
|
1145 |
+
"TheBloke/medalpaca-13B-GPTQ-4bit",
|
1146 |
+
"TheBloke/Vicuna-33B-1-3-SuperHOT-8K-fp16",
|
1147 |
+
"aisquared/dlite-v1-355m",
|
1148 |
+
"uukuguy/speechless-codellama-orca-airoboros-13b-0.10e",
|
1149 |
+
"yhyhy3/med-orca-instruct-33b",
|
1150 |
+
"TheBloke/Wizard-Vicuna-30B-Superhot-8K-fp16",
|
1151 |
+
"TheTravellingEngineer/bloom-1b1-RLHF",
|
1152 |
+
"MBZUAI/lamini-cerebras-1.3b",
|
1153 |
+
"IDEA-CCNL/Ziya-LLaMA-13B-Pretrain-v1",
|
1154 |
+
"TheBloke/WizardLM-7B-uncensored-GPTQ",
|
1155 |
+
"TheBloke/EverythingLM-13B-16K-GPTQ",
|
1156 |
+
"quantumaikr/open_llama_7b_hf",
|
1157 |
+
"TheBloke/chronos-wizardlm-uc-scot-st-13B-GPTQ",
|
1158 |
+
"TheBloke/WizardLM-30B-Uncensored-GPTQ",
|
1159 |
+
"IDEA-CCNL/Ziya-LLaMA-13B-v1",
|
1160 |
+
"Phind/Phind-CodeLlama-34B-v1",
|
1161 |
+
"robowaifudev/megatron-gpt2-345m",
|
1162 |
+
"MayaPH/GodziLLa-30B-instruct",
|
1163 |
+
"TheBloke/CAMEL-33B-Combined-Data-SuperHOT-8K-fp16",
|
1164 |
+
"uukuguy/speechless-codellama-orca-platypus-13b-0.10e",
|
1165 |
+
"doas/test2",
|
1166 |
+
"BreadAi/PM_modelV2",
|
1167 |
+
"bigcode/santacoder",
|
1168 |
+
"TheBloke/wizard-vicuna-13B-GPTQ",
|
1169 |
+
"porkorbeef/Llama-2-13b",
|
1170 |
+
"TehVenom/DiffMerge-DollyGPT-Pygmalion",
|
1171 |
+
"PygmalionAI/pygmalion-350m",
|
1172 |
+
"TheBloke/orca_mini_v3_7B-GPTQ",
|
1173 |
+
"TheBloke/WizardLM-Uncensored-SuperCOT-StoryTelling-30B-GPTQ",
|
1174 |
+
"TheBloke/WizardLM-30B-GPTQ",
|
1175 |
+
"bigscience/bloom-560m",
|
1176 |
+
"TFLai/gpt2-turkish-uncased",
|
1177 |
+
"TheBloke/guanaco-33B-GPTQ",
|
1178 |
+
"TheBloke/openchat_v2_openorca_preview-GPTQ",
|
1179 |
+
"porkorbeef/Llama-2-13b-public",
|
1180 |
+
"TheBloke/LongChat-13B-GPTQ",
|
1181 |
+
"yhyhy3/med-orca-instruct-33b",
|
1182 |
+
"TheBloke/airoboros-33B-gpt4-1-4-SuperHOT-8K-fp16",
|
1183 |
+
"TheBloke/Chinese-Alpaca-33B-SuperHOT-8K-fp16",
|
1184 |
+
"MayaPH/FinOPT-Franklin",
|
1185 |
+
"TheBloke/WizardLM-33B-V1.0-Uncensored-GPTQ",
|
1186 |
+
"TheBloke/Project-Baize-v2-13B-GPTQ",
|
1187 |
+
"malhajar/Platypus2-70B-instruct-4bit-gptq",
|
1188 |
+
"KoboldAI/OPT-350M-Erebus",
|
1189 |
+
"rishiraj/bloom-560m-guanaco",
|
1190 |
+
"Panchovix/WizardLM-33B-V1.0-Uncensored-SuperHOT-8k",
|
1191 |
+
"doas/test5",
|
1192 |
+
"vicgalle/alpaca-7b",
|
1193 |
+
"beomi/KoAlpaca-Polyglot-5.8B",
|
1194 |
+
"Phind/Phind-CodeLlama-34B-Python-v1",
|
1195 |
+
"timdettmers/guanaco-65b-merged",
|
1196 |
+
"TheBloke/wizard-mega-13B-GPTQ",
|
1197 |
+
"MayaPH/GodziLLa-30B-plus",
|
1198 |
+
"TheBloke/Platypus-30B-SuperHOT-8K-fp16",
|
1199 |
+
"facebook/opt-350m",
|
1200 |
+
"KoboldAI/OPT-350M-Nerys-v2",
|
1201 |
+
"TheBloke/robin-33B-v2-GPTQ",
|
1202 |
+
"jaspercatapang/Echidna-30B",
|
1203 |
+
"TheBloke/llama-30b-supercot-SuperHOT-8K-fp16",
|
1204 |
+
"marcchew/test1",
|
1205 |
+
"Harshvir/LaMini-Neo-1.3B-Mental-Health_lora",
|
1206 |
+
"golaxy/gogpt-560m",
|
1207 |
+
"TheBloke/orca_mini_13B-GPTQ",
|
1208 |
+
"Panchovix/airoboros-33b-gpt4-1.2-SuperHOT-8k",
|
1209 |
+
"Aspik101/tulu-7b-instruct-pl-lora_unload",
|
1210 |
+
"Phind/Phind-CodeLlama-34B-v2",
|
1211 |
+
"BreadAi/MusePy-1-2",
|
1212 |
+
"cerebras/Cerebras-GPT-590M",
|
1213 |
+
"microsoft/CodeGPT-small-py",
|
1214 |
+
"victor123/WizardLM-13B-1.0",
|
1215 |
+
"OptimalScale/robin-65b-v2-delta",
|
1216 |
+
"voidful/changpt-bart",
|
1217 |
+
"FabbriSimo01/GPT_Large_Quantized",
|
1218 |
+
"MayaPH/FinOPT-Lincoln",
|
1219 |
+
"KoboldAI/fairseq-dense-125M",
|
1220 |
+
"SebastianSchramm/Cerebras-GPT-111M-instruction",
|
1221 |
+
"TheTravellingEngineer/bloom-560m-RLHF",
|
1222 |
+
"breadlicker45/dough-instruct-base-001",
|
1223 |
+
"WizardLM/WizardLM-30B-V1.0",
|
1224 |
+
"WizardLM/WizardLM-30B-V1.0",
|
1225 |
+
"WizardLM/WizardLM-30B-V1.0",
|
1226 |
+
"TaylorAI/Flash-Llama-30M-20001",
|
1227 |
+
"porkorbeef/Llama-2-13b-12_153950",
|
1228 |
+
"huggingtweets/bladeecity-jerma985",
|
1229 |
+
"KnutJaegersberg/megatron-GPT-2-345m-EvolInstruct",
|
1230 |
+
"bhenrym14/airoboros-33b-gpt4-1.4.1-lxctx-PI-16384-fp16",
|
1231 |
+
"microsoft/DialoGPT-small",
|
1232 |
+
"Corianas/590m",
|
1233 |
+
"facebook/xglm-564M",
|
1234 |
+
"EleutherAI/gpt-neo-125m",
|
1235 |
+
"EleutherAI/pythia-160m-deduped",
|
1236 |
+
"klosax/pythia-160m-deduped-step92k-193bt",
|
1237 |
+
"MBZUAI/lamini-neo-125m",
|
1238 |
+
"bigcode/tiny_starcoder_py",
|
1239 |
+
"concedo/OPT-19M-ChatSalad",
|
1240 |
+
"anton-l/gpt-j-tiny-random",
|
1241 |
+
"grantprice/Cerebras-GPT-590M-finetuned-DND",
|
1242 |
+
"deepnight-research/zsc-text",
|
1243 |
+
"WangZeJun/bloom-820m-chat",
|
1244 |
+
"cerebras/Cerebras-GPT-256M",
|
1245 |
+
"ai-forever/rugpt3large_based_on_gpt2",
|
1246 |
+
"alibidaran/medical_transcription_generator",
|
1247 |
+
"Deci/DeciCoder-1b",
|
1248 |
+
"microsoft/DialoGPT-medium",
|
1249 |
+
"ogimgio/gpt-neo-125m-neurallinguisticpioneers",
|
1250 |
+
"open-llm-leaderboard/bloom-560m-4bit-alpaca-auto-eval-adapter-applied",
|
1251 |
+
"BreadAi/gpt-YA-1-1_160M",
|
1252 |
+
"microsoft/DialoGPT-large",
|
1253 |
+
"facebook/opt-125m",
|
1254 |
+
"huggingtweets/jerma985",
|
1255 |
+
"Locutusque/gpt2-conversational-or-qa",
|
1256 |
+
"concedo/Pythia-70M-ChatSalad",
|
1257 |
+
"roneneldan/TinyStories-1M",
|
1258 |
+
"BreadAi/DiscordPy",
|
1259 |
+
"bigcode/gpt_bigcode-santacoder",
|
1260 |
+
"Tincando/fiction_story_generator",
|
1261 |
+
"klosax/pythia-70m-deduped-step44k-92bt",
|
1262 |
+
"Quake24/easyTermsSummerizer",
|
1263 |
+
"BreadAi/gpt-YA-1-1_70M",
|
1264 |
+
"EleutherAI/pythia-160m",
|
1265 |
+
"euclaise/gpt-neox-122m-minipile-digits",
|
1266 |
+
"MBZUAI/lamini-cerebras-590m",
|
1267 |
+
"nicholasKluge/Aira-124M",
|
1268 |
+
"MayaPH/FinOPT-Washington",
|
1269 |
+
"cyberagent/open-calm-large",
|
1270 |
+
"BreadAi/StoryPy",
|
1271 |
+
"EleutherAI/pythia-70m",
|
1272 |
+
"BreadAi/gpt-Youtube",
|
1273 |
+
"roneneldan/TinyStories-33M",
|
1274 |
+
"EleutherAI/pythia-70m-deduped",
|
1275 |
+
"lgaalves/gpt2_guanaco-dolly-platypus",
|
1276 |
+
"Corianas/Quokka_590m",
|
1277 |
+
"lgaalves/gpt2_platypus-dolly-guanaco",
|
1278 |
+
"cyberagent/open-calm-7b",
|
1279 |
+
"RWKV/rwkv-4-169m-pile",
|
1280 |
+
"gpt2",
|
1281 |
+
"roneneldan/TinyStories-28M",
|
1282 |
+
"lgaalves/gpt2_open-platypus",
|
1283 |
+
"gpt2",
|
1284 |
+
"SaylorTwift/gpt2_test",
|
1285 |
+
"roneneldan/TinyStories-3M",
|
1286 |
+
"nthngdy/pythia-owt2-70m-50k",
|
1287 |
+
"Corianas/256_5epoch",
|
1288 |
+
"roneneldan/TinyStories-8M",
|
1289 |
+
"lgaalves/gpt2-dolly",
|
1290 |
+
"nthngdy/pythia-owt2-70m-100k",
|
1291 |
+
"aisquared/dlite-v2-124m",
|
1292 |
+
"mncai/SGPT-1.3B-insurance-epoch10",
|
1293 |
+
"huggingtweets/gladosystem",
|
1294 |
+
"abhiramtirumala/DialoGPT-sarcastic-medium",
|
1295 |
+
"MBZUAI/lamini-cerebras-256m",
|
1296 |
+
"cerebras/Cerebras-GPT-111M",
|
1297 |
+
"uberkie/metharme-1.3b-finetuned",
|
1298 |
+
"MBZUAI/lamini-cerebras-111m",
|
1299 |
+
"psyche/kogpt",
|
1300 |
+
"Corianas/Quokka_256m",
|
1301 |
+
"vicgalle/gpt2-alpaca-gpt4",
|
1302 |
+
"aisquared/dlite-v1-124m",
|
1303 |
+
"Mikivis/xuanxuan",
|
1304 |
+
"MBZUAI/LaMini-GPT-124M",
|
1305 |
+
"vicgalle/gpt2-alpaca",
|
1306 |
+
"huashiyiqike/testmodel",
|
1307 |
+
"Corianas/111m",
|
1308 |
+
"baseline",
|
1309 |
+
]
|
src/tools/plots.py
ADDED
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import numpy as np
|
3 |
+
import plotly.express as px
|
4 |
+
from plotly.graph_objs import Figure
|
5 |
+
|
6 |
+
from src.leaderboard.filter_models import FLAGGED_MODELS
|
7 |
+
from src.display.utils import human_baseline_row as HUMAN_BASELINE, AutoEvalColumn, BENCHMARK_COLS
|
8 |
+
from src.about import Tasks, Task
|
9 |
+
from src.leaderboard.read_evals import EvalResult
|
10 |
+
|
11 |
+
|
12 |
+
|
13 |
+
def create_scores_df(raw_data: list[EvalResult]) -> pd.DataFrame:
|
14 |
+
"""
|
15 |
+
Generates a DataFrame containing the maximum scores until each date.
|
16 |
+
|
17 |
+
:param results_df: A DataFrame containing result information including metric scores and dates.
|
18 |
+
:return: A new DataFrame containing the maximum scores until each date for every metric.
|
19 |
+
"""
|
20 |
+
# Step 1: Ensure 'date' is in datetime format and sort the DataFrame by it
|
21 |
+
results_df = pd.DataFrame(raw_data)
|
22 |
+
results_df["date"] = pd.to_datetime(results_df["date"], format="mixed", utc=True)
|
23 |
+
results_df.sort_values(by="date", inplace=True)
|
24 |
+
|
25 |
+
# Step 2: Initialize the scores dictionary
|
26 |
+
scores = {k: [] for k in BENCHMARK_COLS + [AutoEvalColumn.average.name]}
|
27 |
+
|
28 |
+
# Step 3: Iterate over the rows of the DataFrame and update the scores dictionary
|
29 |
+
for task in [t.value for t in Tasks] + [Task("Average", "avg", AutoEvalColumn.average.name)]:
|
30 |
+
current_max = 0
|
31 |
+
last_date = ""
|
32 |
+
column = task.col_name
|
33 |
+
for _, row in results_df.iterrows():
|
34 |
+
current_model = row["full_model"]
|
35 |
+
if current_model in FLAGGED_MODELS:
|
36 |
+
continue
|
37 |
+
|
38 |
+
current_date = row["date"]
|
39 |
+
if task.benchmark == "Average":
|
40 |
+
current_score = np.mean(list(row["results"].values()))
|
41 |
+
else:
|
42 |
+
if row["results"] and task.benchmark in row["results"]:
|
43 |
+
current_score = row["results"][task.benchmark]
|
44 |
+
else:
|
45 |
+
current_score = 0
|
46 |
+
|
47 |
+
if current_score > current_max:
|
48 |
+
if current_date == last_date and len(scores[column]) > 0:
|
49 |
+
scores[column][-1] = {"model": current_model, "date": current_date, "score": current_score}
|
50 |
+
else:
|
51 |
+
scores[column].append({"model": current_model, "date": current_date, "score": current_score})
|
52 |
+
current_max = current_score
|
53 |
+
last_date = current_date
|
54 |
+
|
55 |
+
# Step 4: Return all dictionaries as DataFrames
|
56 |
+
return {k: pd.DataFrame(v) for k, v in scores.items()}
|
57 |
+
|
58 |
+
|
59 |
+
def create_plot_df(scores_df: dict[str: pd.DataFrame]) -> pd.DataFrame:
|
60 |
+
"""
|
61 |
+
Transforms the scores DataFrame into a new format suitable for plotting.
|
62 |
+
|
63 |
+
:param scores_df: A DataFrame containing metric scores and dates.
|
64 |
+
:return: A new DataFrame reshaped for plotting purposes.
|
65 |
+
"""
|
66 |
+
# Initialize the list to store DataFrames
|
67 |
+
dfs = []
|
68 |
+
# Iterate over the cols and create a new DataFrame for each column
|
69 |
+
for col in BENCHMARK_COLS + [AutoEvalColumn.average.name]:
|
70 |
+
d = scores_df[col].reset_index(drop=True)
|
71 |
+
d["task"] = col
|
72 |
+
dfs.append(d)
|
73 |
+
|
74 |
+
# Concatenate all the created DataFrames
|
75 |
+
concat_df = pd.concat(dfs, ignore_index=True)
|
76 |
+
|
77 |
+
# Sort values by 'date'
|
78 |
+
concat_df.sort_values(by="date", inplace=True)
|
79 |
+
concat_df.reset_index(drop=True, inplace=True)
|
80 |
+
return concat_df
|
81 |
+
|
82 |
+
|
83 |
+
def create_metric_plot_obj(
|
84 |
+
df: pd.DataFrame, metrics: list[str], title: str
|
85 |
+
) -> Figure:
|
86 |
+
"""
|
87 |
+
Create a Plotly figure object with lines representing different metrics
|
88 |
+
and horizontal dotted lines representing human baselines.
|
89 |
+
|
90 |
+
:param df: The DataFrame containing the metric values, names, and dates.
|
91 |
+
:param metrics: A list of strings representing the names of the metrics
|
92 |
+
to be included in the plot.
|
93 |
+
:param title: A string representing the title of the plot.
|
94 |
+
:return: A Plotly figure object with lines representing metrics and
|
95 |
+
horizontal dotted lines representing human baselines.
|
96 |
+
"""
|
97 |
+
|
98 |
+
# Filter the DataFrame based on the specified metrics
|
99 |
+
df = df[df["task"].isin(metrics)]
|
100 |
+
# Filter the human baselines based on the specified metrics
|
101 |
+
filtered_human_baselines = {k: v for k, v in HUMAN_BASELINE.items() if k in metrics}
|
102 |
+
|
103 |
+
# Create a line figure using plotly express with specified markers and custom data
|
104 |
+
fig = px.line(
|
105 |
+
df,
|
106 |
+
x="date",
|
107 |
+
y="score",
|
108 |
+
color="task",
|
109 |
+
markers=True,
|
110 |
+
custom_data=["task", "score", "model"],
|
111 |
+
title=title,
|
112 |
+
)
|
113 |
+
|
114 |
+
# Update hovertemplate for better hover interaction experience
|
115 |
+
fig.update_traces(
|
116 |
+
hovertemplate="<br>".join(
|
117 |
+
[
|
118 |
+
"Model Name: %{customdata[2]}",
|
119 |
+
"Metric Name: %{customdata[0]}",
|
120 |
+
"Date: %{x}",
|
121 |
+
"Metric Value: %{y}",
|
122 |
+
]
|
123 |
+
)
|
124 |
+
)
|
125 |
+
|
126 |
+
# Update the range of the y-axis
|
127 |
+
fig.update_layout(yaxis_range=[0, 100])
|
128 |
+
|
129 |
+
# Create a dictionary to hold the color mapping for each metric
|
130 |
+
metric_color_mapping = {}
|
131 |
+
|
132 |
+
# Map each metric name to its color in the figure
|
133 |
+
for trace in fig.data:
|
134 |
+
metric_color_mapping[trace.name] = trace.line.color
|
135 |
+
|
136 |
+
# Iterate over filtered human baselines and add horizontal lines to the figure
|
137 |
+
#for metric, value in filtered_human_baselines.items():
|
138 |
+
# color = metric_color_mapping.get(metric, "blue") # Retrieve color from mapping; default to blue if not found
|
139 |
+
# location = "top left" if metric == "HellaSwag" else "bottom left" # Set annotation position
|
140 |
+
# # Add horizontal line with matched color and positioned annotation
|
141 |
+
# fig.add_hline(
|
142 |
+
# y=value,
|
143 |
+
# line_dash="dot",
|
144 |
+
# annotation_text=f"{metric} human baseline",
|
145 |
+
# annotation_position=location,
|
146 |
+
# annotation_font_size=10,
|
147 |
+
# annotation_font_color=color,
|
148 |
+
# line_color=color,
|
149 |
+
# )
|
150 |
+
|
151 |
+
return fig
|
152 |
+
|
153 |
+
|
154 |
+
# Example Usage:
|
155 |
+
# human_baselines dictionary is defined.
|
156 |
+
# chart = create_metric_plot_obj(scores_df, ["ARC", "HellaSwag", "MMLU", "TruthfulQA"], human_baselines, "Graph Title")
|