Spaces:
Running
Running
lixuejing
commited on
Commit
·
9d5b710
1
Parent(s):
b678721
update
Browse files- src/display/utils.py +2 -2
- src/leaderboard/read_evals.py +26 -9
- src/populate.py +17 -0
src/display/utils.py
CHANGED
@@ -27,7 +27,7 @@ auto_eval_column_dict = []
|
|
27 |
auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
|
28 |
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
|
29 |
#Scores
|
30 |
-
|
31 |
for task in Tasks:
|
32 |
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
|
33 |
# Model information
|
@@ -51,7 +51,7 @@ auto_eval_column_quota_dict = []
|
|
51 |
auto_eval_column_quota_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
|
52 |
auto_eval_column_quota_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
|
53 |
#Scores
|
54 |
-
|
55 |
for task in Quotas:
|
56 |
auto_eval_column_quota_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
|
57 |
# Model information
|
|
|
27 |
auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
|
28 |
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
|
29 |
#Scores
|
30 |
+
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)])
|
31 |
for task in Tasks:
|
32 |
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
|
33 |
# Model information
|
|
|
51 |
auto_eval_column_quota_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
|
52 |
auto_eval_column_quota_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
|
53 |
#Scores
|
54 |
+
auto_eval_column_quota_dict.append(["average_quota", ColumnContent, ColumnContent("Average ⬆️", "number", True)])
|
55 |
for task in Quotas:
|
56 |
auto_eval_column_quota_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
|
57 |
# Model information
|
src/leaderboard/read_evals.py
CHANGED
@@ -8,7 +8,7 @@ import dateutil
|
|
8 |
import numpy as np
|
9 |
|
10 |
from src.display.formatting import make_clickable_model
|
11 |
-
from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision, WeightType, Quotas
|
12 |
from src.submission.check_validity import is_model_on_hub
|
13 |
|
14 |
|
@@ -99,7 +99,11 @@ class EvalResult:
|
|
99 |
|
100 |
mean_acc = np.mean(accs) if len(accs) > 0 else 0
|
101 |
print("mean_acc", task.metric, mean_acc)
|
102 |
-
|
|
|
|
|
|
|
|
|
103 |
|
104 |
return self(
|
105 |
eval_name=result_key,
|
@@ -144,7 +148,7 @@ class EvalResult:
|
|
144 |
average = 0
|
145 |
nums = 0
|
146 |
for k,v in self.results.items():
|
147 |
-
if k not in ["Visual Grounding","Counting","State & Activity Understanding","Dynamic","Relative direction","Multi-view matching","Relative distance","Depth estimation","Relative shape","Size estimation","Trajectory","Future prediction","Goal Decomposition","Navigation"]:
|
148 |
if v is not None and v != 0:
|
149 |
average += v
|
150 |
nums += 1
|
@@ -152,6 +156,17 @@ class EvalResult:
|
|
152 |
average = 0
|
153 |
else:
|
154 |
average = average/nums
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
|
156 |
data_dict = {
|
157 |
"eval_name": self.eval_name, # not a column, just a save name,
|
@@ -163,7 +178,8 @@ class EvalResult:
|
|
163 |
AutoEvalColumn.model.name: make_clickable_model(self.full_model),
|
164 |
AutoEvalColumn.dummy.name: self.full_model,
|
165 |
AutoEvalColumn.revision.name: self.revision,
|
166 |
-
|
|
|
167 |
|
168 |
#AutoEvalColumn.license.name: self.license,
|
169 |
#AutoEvalColumn.likes.name: self.likes,
|
@@ -186,13 +202,14 @@ class EvalResult:
|
|
186 |
|
187 |
for task in Quotas:
|
188 |
#data_dict[task.value.col_name] = self.results.get(task.value.metric, 0)
|
189 |
-
if task.value.
|
190 |
data_dict[task.value.col_name] = self.results.get(task.value.metric, 0)
|
191 |
else:
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
|
|
196 |
|
197 |
return data_dict
|
198 |
|
|
|
8 |
import numpy as np
|
9 |
|
10 |
from src.display.formatting import make_clickable_model
|
11 |
+
from src.display.utils import AutoEvalColumn, AutoEvalColumnQuota, ModelType, Tasks, Precision, WeightType, Quotas
|
12 |
from src.submission.check_validity import is_model_on_hub
|
13 |
|
14 |
|
|
|
99 |
|
100 |
mean_acc = np.mean(accs) if len(accs) > 0 else 0
|
101 |
print("mean_acc", task.metric, mean_acc)
|
102 |
+
if task.metric == "overall":
|
103 |
+
results[task.benchmark] = mean_acc
|
104 |
+
else:
|
105 |
+
results[task.metric] = mean_acc
|
106 |
+
|
107 |
|
108 |
return self(
|
109 |
eval_name=result_key,
|
|
|
148 |
average = 0
|
149 |
nums = 0
|
150 |
for k,v in self.results.items():
|
151 |
+
if k not in ["Perception","SpatialReasoning","Prediction","Planning","Visual Grounding","Counting","State & Activity Understanding","Dynamic","Relative direction","Multi-view matching","Relative distance","Depth estimation","Relative shape","Size estimation","Trajectory","Future prediction","Goal Decomposition","Navigation"]:
|
152 |
if v is not None and v != 0:
|
153 |
average += v
|
154 |
nums += 1
|
|
|
156 |
average = 0
|
157 |
else:
|
158 |
average = average/nums
|
159 |
+
|
160 |
+
nums,average_quota=0,0
|
161 |
+
for k,v in self.results.items():
|
162 |
+
if k in ["Perception","SpatialReasoning","Prediction","Planning"]:
|
163 |
+
f v is not None and v != 0:
|
164 |
+
average_quota += v
|
165 |
+
nums += 1
|
166 |
+
if nums ==0:
|
167 |
+
average_quota = 0
|
168 |
+
else:
|
169 |
+
average_quota = average_quota/nums
|
170 |
|
171 |
data_dict = {
|
172 |
"eval_name": self.eval_name, # not a column, just a save name,
|
|
|
178 |
AutoEvalColumn.model.name: make_clickable_model(self.full_model),
|
179 |
AutoEvalColumn.dummy.name: self.full_model,
|
180 |
AutoEvalColumn.revision.name: self.revision,
|
181 |
+
AutoEvalColumn.average.name: average,
|
182 |
+
AutoEvalColumnQuota.average_quota.name: average_quota,
|
183 |
|
184 |
#AutoEvalColumn.license.name: self.license,
|
185 |
#AutoEvalColumn.likes.name: self.likes,
|
|
|
202 |
|
203 |
for task in Quotas:
|
204 |
#data_dict[task.value.col_name] = self.results.get(task.value.metric, 0)
|
205 |
+
if task.value.metric != "overall":
|
206 |
data_dict[task.value.col_name] = self.results.get(task.value.metric, 0)
|
207 |
else:
|
208 |
+
data_dict[task.value.col_name] = self.results.get(task.value.bench, 0)
|
209 |
+
#if self.results.get(task.value.benchmark, 0) == 0:
|
210 |
+
# data_dict[task.value.col_name] = "-"
|
211 |
+
#else:
|
212 |
+
# data_dict[task.value.col_name] = "%.2f" % self.results.get(task.value.metric, 0)
|
213 |
|
214 |
return data_dict
|
215 |
|
src/populate.py
CHANGED
@@ -27,6 +27,23 @@ def get_leaderboard_df(results_path: str, requests_path: str, dynamic_path: str,
|
|
27 |
return raw_data, df
|
28 |
|
29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
|
31 |
"""Creates the different dataframes for the evaluation queues requestes"""
|
32 |
entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")]
|
|
|
27 |
return raw_data, df
|
28 |
|
29 |
|
30 |
+
def get_leaderboard_df_quota(results_path: str, requests_path: str, dynamic_path: str,cols: list, benchmark_cols: list) -> pd.DataFrame:
|
31 |
+
"""Creates a dataframe from all the individual experiment results"""
|
32 |
+
raw_data = get_raw_eval_results(results_path, requests_path, dynamic_path)
|
33 |
+
for v in raw_data:
|
34 |
+
print(v.to_dict())
|
35 |
+
all_data_json = [v.to_dict() for v in raw_data]
|
36 |
+
#all_data_json.append(baseline_row)
|
37 |
+
filter_models_flags(all_data_json)
|
38 |
+
df = pd.DataFrame.from_records(all_data_json)
|
39 |
+
print("AutoEvalColumn.average.name",AutoEvalColumn.average.name)
|
40 |
+
df = df.sort_values(by=[AutoEvalColumnQuota.average.name], ascending=False)
|
41 |
+
df = df[cols].round(decimals=2)
|
42 |
+
|
43 |
+
# filter out if any of the benchmarks have not been produced
|
44 |
+
df = df[has_no_nan_values(df, benchmark_cols)]
|
45 |
+
return raw_data, df
|
46 |
+
|
47 |
def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
|
48 |
"""Creates the different dataframes for the evaluation queues requestes"""
|
49 |
entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")]
|