from dataclasses import dataclass, make_dataclass from enum import Enum import pandas as pd from src.about import Tasks,Quotas def fields(raw_class): return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"] # These classes are for user facing column names, # to avoid having to change them all around the code # when a modif is needed @dataclass class ColumnContent: name: str type: str displayed_by_default: bool hidden: bool = False never_hidden: bool = False dummy: bool = False ## Leaderboard columns auto_eval_column_dict = [] # Init auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)]) auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)]) #Scores auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)]) for task in Tasks: auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)]) # Model information auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)]) auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)]) auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)]) auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)]) auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)]) auto_eval_column_dict.append(["flagged", ColumnContent, ColumnContent("Flagged", "bool", False, hidden=True)]) auto_eval_column_dict.append(["moe", ColumnContent, ColumnContent("MoE", "bool", False, hidden=True)]) # Dummy column for the search bar (hidden by the custom CSS) auto_eval_column_dict.append(["dummy", ColumnContent, ColumnContent("model_name_for_query", "str", False, dummy=True)]) # We use make dataclass to dynamically fill the scores from Tasks AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True) ## Leaderboard columns auto_eval_column_quota_dict = [] # Init auto_eval_column_quota_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)]) auto_eval_column_quota_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)]) #Scores auto_eval_column_quota_dict.append(["average_quota", ColumnContent, ColumnContent("AverageSampled ⬆️", "number", True)]) for task in Quotas: auto_eval_column_quota_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)]) # Model information auto_eval_column_quota_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)]) auto_eval_column_quota_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)]) auto_eval_column_quota_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)]) auto_eval_column_quota_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)]) auto_eval_column_quota_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)]) auto_eval_column_quota_dict.append(["flagged", ColumnContent, ColumnContent("Flagged", "bool", False, hidden=True)]) auto_eval_column_quota_dict.append(["moe", ColumnContent, ColumnContent("MoE", "bool", False, hidden=True)]) # Dummy column for the search bar (hidden by the custom CSS) auto_eval_column_quota_dict.append(["dummy", ColumnContent, ColumnContent("model_name_for_query", "str", False, dummy=True)]) # We use make dataclass to dynamically fill the scores from Tasks AutoEvalColumnQuota = make_dataclass("AutoEvalColumnQuota", auto_eval_column_quota_dict, frozen=True) ## For the queue columns in the submission tab @dataclass(frozen=True) class EvalQueueColumn: # Queue column model = ColumnContent("model", "markdown", True) revision = ColumnContent("revision", "str", True) private = ColumnContent("private", "bool", True) precision = ColumnContent("precision", "str", True) weight_type = ColumnContent("weight_type", "str", "Original") status = ColumnContent("status", "str", True) ## All the model information that we might need @dataclass class ModelDetails: name: str display_name: str = "" symbol: str = "" # emoji class ModelType(Enum): PT = ModelDetails(name="pretrained", symbol="🟢") FT = ModelDetails(name="fine-tuned on domain-specific datasets", symbol="🔶") chat = ModelDetails(name="chat models (RLHF, DPO, IFT, ...)", symbol="💬") merges = ModelDetails(name="base merges and moerges", symbol="🤝") Unknown = ModelDetails(name="", symbol="?") def to_str(self, separator=" "): return f"{self.value.symbol}{separator}{self.value.name}" @staticmethod def from_str(type): if "fine-tuned" in type or "🔶" in type: return ModelType.FT if "pretrained" in type or "🟢" in type: return ModelType.PT if any([k in type for k in ["instruction-tuned", "RL-tuned", "chat", "🟦", "⭕", "💬"]]): return ModelType.chat if "merge" in type or "🤝" in type: return ModelType.merges return ModelType.Unknown class WeightType(Enum): Adapter = ModelDetails("Adapter") Original = ModelDetails("Original") Delta = ModelDetails("Delta") class Precision(Enum): float16 = ModelDetails("float16") bfloat16 = ModelDetails("bfloat16") qt_8bit = ModelDetails("8bit") qt_4bit = ModelDetails("4bit") qt_GPTQ = ModelDetails("GPTQ") Unknown = ModelDetails("?") def from_str(precision): if precision in ["torch.float16", "float16"]: return Precision.float16 if precision in ["torch.bfloat16", "bfloat16"]: return Precision.bfloat16 if precision in ["8bit"]: return Precision.qt_8bit if precision in ["4bit"]: return Precision.qt_4bit if precision in ["GPTQ", "None"]: return Precision.qt_GPTQ return Precision.Unknown # Column selection COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden] TYPES = [c.type for c in fields(AutoEvalColumn) if not c.hidden] QUOTACOLS = [c.name for c in fields(AutoEvalColumnQuota) if not c.hidden] QUOTATYPES = [c.type for c in fields(AutoEvalColumnQuota) if not c.hidden] EVAL_COLS = [c.name for c in fields(EvalQueueColumn)] EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)] BENCHMARK_COLS = [t.value.col_name for t in Tasks] BENCHMARK_QUOTACOLS = [t.value.col_name for t in Quotas] NUMERIC_INTERVALS = { "?": pd.Interval(-1, 0, closed="right"), "~1.5": pd.Interval(0, 2, closed="right"), "~3": pd.Interval(2, 4, closed="right"), "~7": pd.Interval(4, 9, closed="right"), "~13": pd.Interval(9, 20, closed="right"), "~35": pd.Interval(20, 45, closed="right"), "~60": pd.Interval(45, 70, closed="right"), "70+": pd.Interval(70, 10000, closed="right"), } # Define the baselines #baseline_row = { # AutoEvalColumn.model.name: "

Baseline

", # AutoEvalColumn.revision.name: "N/A", # AutoEvalColumn.precision.name: None, # AutoEvalColumn.average.name: 92.75, # #AutoEvalColumn.merged.name: False, # AutoEvalColumn.CMMMU.name: 100, # AutoEvalColumn.MMMU.name: 100, # AutoEvalColumn.MMMU_Pro_standard.name: 100, # AutoEvalColumn.MMMU_Pro_vision.name: 100, # AutoEvalColumn.MathVision.name: 100, # AutoEvalColumn.CII_Bench.name: 100, # AutoEvalColumn.Blink.name: 100, # AutoEvalColumn.CharXiv.name: 100, # AutoEvalColumn.MathVerse.name: 100, # AutoEvalColumn.MmvetV2.name: 100, # AutoEvalColumn.Ocrlite.name: 100, # AutoEvalColumn.OcrliteZh.name: 100, # AutoEvalColumn.dummy.name: "baseline", # AutoEvalColumn.model_type.name: "", # AutoEvalColumn.flagged.name: False, #} # ## Define the human baselines #human_baseline_row = { # AutoEvalColumn.model.name: "

Human performance

", # AutoEvalColumn.revision.name: "N/A", # AutoEvalColumn.precision.name: None, # AutoEvalColumn.average.name: 92.75, # #AutoEvalColumn.merged.name: False, # AutoEvalColumn.CMMMU.name: 100, # AutoEvalColumn.MMMU.name: 100, # AutoEvalColumn.MMMU_Pro_standard.name: 100, # AutoEvalColumn.MMMU_Pro_vision.name: 100, # AutoEvalColumn.MathVision.name: 100, # AutoEvalColumn.CII_Bench.name: 100, # AutoEvalColumn.Blink.name: 100, # AutoEvalColumn.CharXiv.name: 100, # AutoEvalColumn.MathVerse.name: 100, # AutoEvalColumn.MmvetV2.name: 100, # AutoEvalColumn.Ocrlite.name: 100, # AutoEvalColumn.OcrliteZh.name: 100, # AutoEvalColumn.dummy.name: "human_baseline", # AutoEvalColumn.model_type.name: "", # AutoEvalColumn.flagged.name: False, #}