Spaces:
Sleeping
Sleeping
File size: 13,132 Bytes
e556db9 399fa8f e556db9 443cdf6 e556db9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 |
import gradio as gr
from haystack.document_stores import FAISSDocumentStore
from haystack.nodes import EmbeddingRetriever
import openai
import pandas as pd
import os
from utils import (
make_pairs,
set_openai_api_key,
create_user_id,
to_completion,
)
from datetime import datetime
# from azure.storage.fileshare import ShareServiceClient
try:
from dotenv import load_dotenv
load_dotenv()
except:
pass
theme = gr.themes.Soft(
primary_hue="sky",
font=[gr.themes.GoogleFont("Poppins"), "ui-sans-serif", "system-ui", "sans-serif"],
)
init_prompt = (
"TKOQA, an AI Assistant for Tikehau. "
)
sources_prompt = (
"When relevant, use facts and numbers from the following documents in your answer. "
)
def get_reformulation_prompt(query: str) -> str:
return f"""Reformulate the following user message to be a short standalone question in English, in the context of the Universal Registration Document of Tikehau .
---
query: what is the AUM of Tikehau in 2022?
standalone question: What is the AUM of TIkehau in 2022?
language: English
---
query: what is T2?
standalone question: what is the transition energy fund at Tikehau?
language: English
---
query: what is the business of Tikehau?
standalone question: What are the main business units of Tikehau?
language: English
---
query: {query}
standalone question:"""
system_template = {
"role": "system",
"content": init_prompt,
}
openai.api_key = os.environ["OPENAI_API_KEY"]
# BHO
# openai.api_base = os.environ["ressource_endpoint"]
# openai.api_version = "2022-12-01"
document_store = FAISSDocumentStore()
ds = FAISSDocumentStore.load(index_path="./tko_urd.faiss", config_path="./tko_urd.json",)
retriever = EmbeddingRetriever(
document_store=ds,
embedding_model="sentence-transformers/multi-qa-mpnet-base-dot-v1",
model_format="sentence_transformers",
progress_bar=False,
)
# retrieve_giec = EmbeddingRetriever(
# document_store=FAISSDocumentStore.load(
# index_path="./documents/climate_gpt_v2_only_giec.faiss",
# config_path="./documents/climate_gpt_v2_only_giec.json",
# ),
# embedding_model="sentence-transformers/multi-qa-mpnet-base-dot-v1",
# model_format="sentence_transformers",
# )
# BHO
# For Azure connection in secrets in HuggingFace
# credential = {
# "account_key": os.environ["account_key"],
# "account_name": os.environ["account_name"],
# }
# BHO
# account_url = os.environ["account_url"]
# file_share_name = "climategpt"
# service = ShareServiceClient(account_url=account_url, credential=credential)
# share_client = service.get_share_client(file_share_name)
user_id = create_user_id(10)
def filter_sources(df, k_summary=3, k_total=10, source="ipcc"):
assert source in ["ipcc", "ipbes", "all"]
# Filter by source
if source == "ipcc":
df = df.loc[df["source"] == "IPCC"]
elif source == "ipbes":
df = df.loc[df["source"] == "IPBES"]
else:
pass
# Prepare summaries
df_summaries = df #.loc[df.loc.obj.values]
# Separate summaries and full reports
#df_summaries = df.loc[df["report_type"].isin(["SPM", "TS"])]
#df_full = df.loc[~df["report_type"].isin(["SPM", "TS"])]
# Find passages from summaries dataset
passages_summaries = df_summaries.head(k_summary)
# Find passages from full reports dataset
# passages_fullreports = df_full.head(k_total - len(passages_summaries))
# Concatenate passages
#passages = pd.concat([passages_summaries, passages_fullreports], axis=0, ignore_index=True)
passages = passages_summaries
return passages
def retrieve_with_summaries(query, retriever, k_summary=3, k_total=10, source="ipcc", max_k=100, threshold=0.555,
as_dict=True):
assert max_k > k_total
docs = retriever.retrieve(query, top_k=max_k)
docs = [{**x.meta, "score": x.score, "content": x.content} for x in docs if x.score > threshold]
if len(docs) == 0:
return []
res = pd.DataFrame(docs)
passages_df = filter_sources(res, k_summary, k_total, source)
if as_dict:
contents = passages_df["content"].tolist()
meta = passages_df.drop(columns=["content"]).to_dict(orient="records")
passages = []
for i in range(len(contents)):
passages.append({"content": contents[i], "meta": meta[i]})
return passages
else:
return passages_df
def make_html_source(source, i):
meta = source['meta']
return f"""
<div class="card">
<div class="card-content">
<h2>Doc {i} - {meta['file_name']} - Page {meta['page_number']}</h2>
<p>{source['content']}</p>
</div>
</div>
"""
def chat(
user_id: str,
query: str,
history: list = [system_template],
report_type: str = "All available",
threshold: float = 0.555,
) -> tuple:
"""retrieve relevant documents in the document store then query gpt-turbo
Args:
query (str): user message.
history (list, optional): history of the conversation. Defaults to [system_template].
report_type (str, optional): should be "All available" or "IPCC only". Defaults to "All available".
threshold (float, optional): similarity threshold, don't increase more than 0.568. Defaults to 0.56.
Yields:
tuple: chat gradio format, chat openai format, sources used.
"""
if report_type not in ["IPCC", "IPBES"]: report_type = "all"
print("Searching in ", report_type, " reports")
reformulated_query = openai.Completion.create(
engine="text-davinci-003",
prompt=get_reformulation_prompt(query),
temperature=0,
max_tokens=128,
stop=["\n---\n", "<|im_end|>"],
)
reformulated_query = reformulated_query["choices"][0]["text"]
reformulated_query, language = reformulated_query.split("\n")
language = language.split(":")[1].strip()
sources = retrieve_with_summaries(reformulated_query, retriever, k_total=10, k_summary=3, as_dict=True,
source=report_type.lower(), threshold=threshold)
response_retriever = {
"language": language,
"reformulated_query": reformulated_query,
"query": query,
"sources": sources,
}
# docs = [d for d in retriever.retrieve(query=reformulated_query, top_k=10) if d.score > threshold]
messages = history + [{"role": "user", "content": query}]
if len(sources) > 0:
docs_string = []
docs_html = []
for i, d in enumerate(sources, 1):
#docs_string.append(f"π Doc {i}: {d['meta']['short_name']} page {d['meta']['page_number']}\n{d['content']}")
docs_string.append(f"π Doc {i}: {d['meta']['file_name']} page {d['meta']['page_number']}\n{d['content']}")
docs_html.append(make_html_source(d, i))
docs_string = "\n\n".join([f"Query used for retrieval:\n{reformulated_query}"] + docs_string)
docs_html = "\n\n".join([f"Query used for retrieval:\n{reformulated_query}"] + docs_html)
messages.append({"role": "system", "content": f"{sources_prompt}\n\n{docs_string}\n\nAnswer in {language}:"})
response = openai.Completion.create(
# engine="climateGPT",
engine="text-davinci-003",
prompt=to_completion(messages),
temperature=0, # deterministic
stream=True,
max_tokens=1024,
)
complete_response = ""
messages.pop()
messages.append({"role": "assistant", "content": complete_response})
timestamp = str(datetime.now().timestamp())
file = user_id[0] + timestamp + ".json"
logs = {
"user_id": user_id[0],
"prompt": query,
"retrived": sources,
"report_type": report_type,
"prompt_eng": messages[0],
"answer": messages[-1]["content"],
"time": timestamp,
}
# log_on_azure(file, logs, share_client)
print(logs)
for chunk in response:
if (chunk_message := chunk["choices"][0].get("text")) and chunk_message != "<|im_end|>":
complete_response += chunk_message
messages[-1]["content"] = complete_response
gradio_format = make_pairs([a["content"] for a in messages[1:]])
yield gradio_format, messages, docs_html
else:
docs_string = "β οΈ No relevant passages found in the URDs"
complete_response = "**β οΈ No relevant passages found in the URDs **"
messages.append({"role": "assistant", "content": complete_response})
gradio_format = make_pairs([a["content"] for a in messages[1:]])
yield gradio_format, messages, docs_string
def save_feedback(feed: str, user_id):
if len(feed) > 1:
timestamp = str(datetime.now().timestamp())
file = user_id[0] + timestamp + ".json"
logs = {
"user_id": user_id[0],
"feedback": feed,
"time": timestamp,
}
# log_on_azure(file, logs, share_client)
print(logs)
return "Feedback submitted, thank you!"
def reset_textbox():
return gr.update(value="")
# def log_on_azure(file, logs, share_client):
# file_client = share_client.get_file_client(file)
# file_client.upload_file(str(logs))
with gr.Blocks(title="TKO URD Q&A", css="style.css", theme=theme) as demo:
user_id_state = gr.State([user_id])
# Gradio
gr.Markdown("<h1><center>Tikehau Capital Q&A </center></h1>")
with gr.Row():
with gr.Column(scale=2):
chatbot = gr.Chatbot(elem_id="chatbot", label=" Tikehau Capital Q&A chatbot", show_label=False)
state = gr.State([system_template])
with gr.Row():
ask = gr.Textbox(
show_label=True,
placeholder="Ask here your Tikehau-related question and press enter",
).style(container=False)
#ask_examples_hidden = gr.Textbox(elem_id="hidden-message")
# examples_questions = gr.Examples(
# [
# "What is the AUM of Tikehau in 2022?",
# ],
# [ask_examples_hidden],
# examples_per_page=15,
#)
with gr.Column(scale=1, variant="panel"):
gr.Markdown("### Sources")
sources_textbox = gr.Markdown(show_label=False)
# dropdown_sources = gr.inputs.Dropdown(
# ["IPCC", "IPBES", "ALL"],
# default="ALL",
# label="Select reports",
# )
dropdown_sources = gr.State(["All"])
ask.submit(
fn=chat,
inputs=[
user_id_state,
ask,
state,
dropdown_sources
],
outputs=[chatbot, state, sources_textbox],
)
ask.submit(reset_textbox, [], [ask])
# ask_examples_hidden.change(
# fn=chat,
# inputs=[
# user_id_state,
# ask_examples_hidden,
# state,
# dropdown_sources
# ],
# outputs=[chatbot, state, sources_textbox],
# )
with gr.Row():
with gr.Column(scale=1):
gr.Markdown(
"""
<div class="warning-box">
Version 0.1-beta - This tool is under active development
</div>
"""
)
with gr.Column(scale=1):
gr.Markdown("*Source : Tikehau Universal Registration Documents *")
gr.Markdown("## How to use TKO URD Q&A")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown(
"""
### πͺ Getting started
- In the chatbot section, simply type your Tikehau-related question, answers will be provided with references to relevant URDs.
"""
)
with gr.Column(scale=1):
gr.Markdown(
"""
### β οΈ Limitations
<div class="warning-box">
<ul>
<li>Please note that, like any AI, the model may occasionally generate an inaccurate or imprecise answer.</li>
</div>
"""
)
gr.Markdown("## π Feedback and feature requests")
gr.Markdown(
"""
### Beta test
- Feedback welcome. Inspired from the Climate tool by Ekimetrics.
"""
)
gr.Markdown(
"""
## π’οΈ Carbon Footprint
Carbon emissions were measured during the development and inference process using CodeCarbon [https://github.com/mlco2/codecarbon](https://github.com/mlco2/codecarbon)
| Phase | Description | Emissions | Source |
| --- | --- | --- | --- |
| Inference | API call to turbo-GPT | ~0.38gCO2e / call | https://medium.com/@chrispointon/the-carbon-footprint-of-chatgpt-e1bc14e4cc2a |
Carbon Emissions are **relatively low but not negligible** compared to other usages: one question asked to TKO Q&A is around 0.482gCO2e - equivalent to 2.2m by car (https://datagir.ademe.fr/apps/impact-co2/)
Or around 2 to 4 times more than a typical Google search.
</b>.
"""
)
demo.queue(concurrency_count=16)
demo.launch()
|