File size: 13,132 Bytes
e556db9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
399fa8f
e556db9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
443cdf6
e556db9
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
import gradio as gr
from haystack.document_stores import FAISSDocumentStore
from haystack.nodes import EmbeddingRetriever
import openai
import pandas as pd
import os
from utils import (
    make_pairs,
    set_openai_api_key,
    create_user_id,
    to_completion,
)

from datetime import datetime

# from azure.storage.fileshare import ShareServiceClient

try:
    from dotenv import load_dotenv

    load_dotenv()
except:
    pass

theme = gr.themes.Soft(
    primary_hue="sky",
    font=[gr.themes.GoogleFont("Poppins"), "ui-sans-serif", "system-ui", "sans-serif"],
)

init_prompt = (
    "TKOQA, an AI Assistant for Tikehau. "

)
sources_prompt = (
    "When relevant, use facts and numbers from the following documents in your answer. "
)


def get_reformulation_prompt(query: str) -> str:
    return f"""Reformulate the following user message to be a short standalone question in English, in the context of the Universal Registration Document of Tikehau .
---
query: what is the AUM of Tikehau in 2022?
standalone question: What is the AUM of TIkehau in 2022?
language: English
---
query: what is T2?
standalone question: what is the transition energy fund at Tikehau?
language: English
---
query: what is the business of Tikehau?
standalone question: What are the main business units of Tikehau?
language: English
---
query: {query}
standalone question:"""



system_template = {
    "role": "system",
    "content": init_prompt,
}

openai.api_key = os.environ["OPENAI_API_KEY"]

# BHO
# openai.api_base = os.environ["ressource_endpoint"]
# openai.api_version = "2022-12-01"

document_store = FAISSDocumentStore()

ds = FAISSDocumentStore.load(index_path="./tko_urd.faiss", config_path="./tko_urd.json",)

retriever = EmbeddingRetriever(
    document_store=ds,
    embedding_model="sentence-transformers/multi-qa-mpnet-base-dot-v1",
    model_format="sentence_transformers",
    progress_bar=False,
)

# retrieve_giec = EmbeddingRetriever(
#     document_store=FAISSDocumentStore.load(
#         index_path="./documents/climate_gpt_v2_only_giec.faiss",
#         config_path="./documents/climate_gpt_v2_only_giec.json",
#     ),
#     embedding_model="sentence-transformers/multi-qa-mpnet-base-dot-v1",
#     model_format="sentence_transformers",
# )

# BHO
# For Azure connection in secrets in HuggingFace
# credential = {
#     "account_key": os.environ["account_key"],
#     "account_name": os.environ["account_name"],
# }

# BHO
# account_url = os.environ["account_url"]
# file_share_name = "climategpt"
# service = ShareServiceClient(account_url=account_url, credential=credential)
# share_client = service.get_share_client(file_share_name)
user_id = create_user_id(10)


def filter_sources(df, k_summary=3, k_total=10, source="ipcc"):
    assert source in ["ipcc", "ipbes", "all"]

    # Filter by source
    if source == "ipcc":
        df = df.loc[df["source"] == "IPCC"]
    elif source == "ipbes":
        df = df.loc[df["source"] == "IPBES"]
    else:
        pass

    # Prepare summaries
    df_summaries = df #.loc[df.loc.obj.values]
    # Separate summaries and full reports
    #df_summaries = df.loc[df["report_type"].isin(["SPM", "TS"])]
    #df_full = df.loc[~df["report_type"].isin(["SPM", "TS"])]

    # Find passages from summaries dataset
    passages_summaries = df_summaries.head(k_summary)

    # Find passages from full reports dataset
    # passages_fullreports = df_full.head(k_total - len(passages_summaries))

    # Concatenate passages
    #passages = pd.concat([passages_summaries, passages_fullreports], axis=0, ignore_index=True)
    passages = passages_summaries
    return passages


def retrieve_with_summaries(query, retriever, k_summary=3, k_total=10, source="ipcc", max_k=100, threshold=0.555,
                            as_dict=True):
    assert max_k > k_total
    docs = retriever.retrieve(query, top_k=max_k)
    docs = [{**x.meta, "score": x.score, "content": x.content} for x in docs if x.score > threshold]
    if len(docs) == 0:
        return []
    res = pd.DataFrame(docs)
    passages_df = filter_sources(res, k_summary, k_total, source)
    if as_dict:
        contents = passages_df["content"].tolist()
        meta = passages_df.drop(columns=["content"]).to_dict(orient="records")
        passages = []
        for i in range(len(contents)):
            passages.append({"content": contents[i], "meta": meta[i]})
        return passages
    else:
        return passages_df


def make_html_source(source, i):
    meta = source['meta']
    return f"""
<div class="card">
    <div class="card-content">
        <h2>Doc {i} - {meta['file_name']} - Page {meta['page_number']}</h2>
        <p>{source['content']}</p>
    </div>
    
</div>
"""


def chat(
        user_id: str,
        query: str,
        history: list = [system_template],
        report_type: str = "All available",
        threshold: float = 0.555,
) -> tuple:
    """retrieve relevant documents in the document store then query gpt-turbo

    Args:
        query (str): user message.
        history (list, optional): history of the conversation. Defaults to [system_template].
        report_type (str, optional): should be "All available" or "IPCC only". Defaults to "All available".
        threshold (float, optional): similarity threshold, don't increase more than 0.568. Defaults to 0.56.

    Yields:
        tuple: chat gradio format, chat openai format, sources used.
    """

    if report_type not in ["IPCC", "IPBES"]: report_type = "all"
    print("Searching in ", report_type, " reports")

    reformulated_query = openai.Completion.create(
        engine="text-davinci-003",
        prompt=get_reformulation_prompt(query),
        temperature=0,
        max_tokens=128,
        stop=["\n---\n", "<|im_end|>"],
    )

    reformulated_query = reformulated_query["choices"][0]["text"]
    reformulated_query, language = reformulated_query.split("\n")
    language = language.split(":")[1].strip()

    sources = retrieve_with_summaries(reformulated_query, retriever, k_total=10, k_summary=3, as_dict=True,
                                      source=report_type.lower(), threshold=threshold)
    response_retriever = {
        "language": language,
        "reformulated_query": reformulated_query,
        "query": query,
        "sources": sources,
    }

    # docs = [d for d in retriever.retrieve(query=reformulated_query, top_k=10) if d.score > threshold]
    messages = history + [{"role": "user", "content": query}]

    if len(sources) > 0:
        docs_string = []
        docs_html = []
        for i, d in enumerate(sources, 1):
            #docs_string.append(f"πŸ“ƒ Doc {i}: {d['meta']['short_name']} page {d['meta']['page_number']}\n{d['content']}")
            docs_string.append(f"πŸ“ƒ Doc {i}: {d['meta']['file_name']} page {d['meta']['page_number']}\n{d['content']}")
            docs_html.append(make_html_source(d, i))
        docs_string = "\n\n".join([f"Query used for retrieval:\n{reformulated_query}"] + docs_string)
        docs_html = "\n\n".join([f"Query used for retrieval:\n{reformulated_query}"] + docs_html)
        messages.append({"role": "system", "content": f"{sources_prompt}\n\n{docs_string}\n\nAnswer in {language}:"})

        response = openai.Completion.create(
            # engine="climateGPT",
            engine="text-davinci-003",
            prompt=to_completion(messages),
            temperature=0,  # deterministic
            stream=True,
            max_tokens=1024,
        )

        complete_response = ""
        messages.pop()

        messages.append({"role": "assistant", "content": complete_response})
        timestamp = str(datetime.now().timestamp())
        file = user_id[0] + timestamp + ".json"
        logs = {
            "user_id": user_id[0],
            "prompt": query,
            "retrived": sources,
            "report_type": report_type,
            "prompt_eng": messages[0],
            "answer": messages[-1]["content"],
            "time": timestamp,
        }
        # log_on_azure(file, logs, share_client)
        print(logs)

        for chunk in response:
            if (chunk_message := chunk["choices"][0].get("text")) and chunk_message != "<|im_end|>":
                complete_response += chunk_message
                messages[-1]["content"] = complete_response
                gradio_format = make_pairs([a["content"] for a in messages[1:]])
                yield gradio_format, messages, docs_html

    else:
        docs_string = "⚠️ No relevant passages found in the URDs"
        complete_response = "**⚠️ No relevant passages found in the URDs **"
        messages.append({"role": "assistant", "content": complete_response})
        gradio_format = make_pairs([a["content"] for a in messages[1:]])
        yield gradio_format, messages, docs_string


def save_feedback(feed: str, user_id):
    if len(feed) > 1:
        timestamp = str(datetime.now().timestamp())
        file = user_id[0] + timestamp + ".json"
        logs = {
            "user_id": user_id[0],
            "feedback": feed,
            "time": timestamp,
        }
        # log_on_azure(file, logs, share_client)
        print(logs)
        return "Feedback submitted, thank you!"


def reset_textbox():
    return gr.update(value="")


# def log_on_azure(file, logs, share_client):
#     file_client = share_client.get_file_client(file)
#     file_client.upload_file(str(logs))


with gr.Blocks(title="TKO URD Q&A", css="style.css", theme=theme) as demo:
    user_id_state = gr.State([user_id])

    # Gradio
    gr.Markdown("<h1><center>Tikehau Capital Q&A </center></h1>")

    with gr.Row():
        with gr.Column(scale=2):
            chatbot = gr.Chatbot(elem_id="chatbot", label=" Tikehau Capital Q&A chatbot", show_label=False)
            state = gr.State([system_template])

            with gr.Row():
                ask = gr.Textbox(
                    show_label=True,
                    placeholder="Ask here your Tikehau-related question and press enter",
                ).style(container=False)
                #ask_examples_hidden = gr.Textbox(elem_id="hidden-message")

            # examples_questions = gr.Examples(
            #     [
            #         "What is the AUM of Tikehau in 2022?",
            #     ],
            #     [ask_examples_hidden],
            #     examples_per_page=15,
            #)

        with gr.Column(scale=1, variant="panel"):
            gr.Markdown("### Sources")
            sources_textbox = gr.Markdown(show_label=False)

    # dropdown_sources = gr.inputs.Dropdown(
    #     ["IPCC", "IPBES", "ALL"],
    #     default="ALL",
    #     label="Select reports",
    # )
    dropdown_sources = gr.State(["All"])

    ask.submit(
        fn=chat,
        inputs=[
            user_id_state,
            ask,
            state,
            dropdown_sources

        ],
        outputs=[chatbot, state, sources_textbox],
    )
    ask.submit(reset_textbox, [], [ask])

    # ask_examples_hidden.change(
    #     fn=chat,
    #     inputs=[
    #         user_id_state,
    #         ask_examples_hidden,
    #         state,
    #         dropdown_sources
    #     ],
    #     outputs=[chatbot, state, sources_textbox],
    # )

    with gr.Row():
        with gr.Column(scale=1):
            gr.Markdown(
                """
<div class="warning-box">
Version 0.1-beta - This tool is under active development
</div>

"""
            )

        with gr.Column(scale=1):
            gr.Markdown("*Source : Tikehau Universal Registration Documents *")

    gr.Markdown("## How to use TKO URD Q&A")
    with gr.Row():
        with gr.Column(scale=1):
            gr.Markdown(
                """
    ### πŸ’ͺ Getting started
    - In the chatbot section, simply type your Tikehau-related question, answers will be provided  with references to relevant URDs.
    """
            )
        with gr.Column(scale=1):
            gr.Markdown(
                """
    ### ⚠️ Limitations
    <div class="warning-box">
    <ul>
        <li>Please note that, like any AI, the model may occasionally generate an inaccurate or imprecise answer.</li>
    </div>
    """
            )

    gr.Markdown("## πŸ™ Feedback and feature requests")
    gr.Markdown(
        """
    ### Beta test
    - Feedback welcome. Inspired from the Climate tool by Ekimetrics.
    """
    )

    gr.Markdown(
        """


## πŸ›’οΈ Carbon Footprint

Carbon emissions were measured during the development and inference process using CodeCarbon [https://github.com/mlco2/codecarbon](https://github.com/mlco2/codecarbon)

| Phase | Description | Emissions | Source |
| --- | --- | --- | --- |
| Inference | API call to turbo-GPT | ~0.38gCO2e / call | https://medium.com/@chrispointon/the-carbon-footprint-of-chatgpt-e1bc14e4cc2a |

Carbon Emissions are **relatively low but not negligible** compared to other usages: one question asked to TKO Q&A is around 0.482gCO2e - equivalent to 2.2m by car (https://datagir.ademe.fr/apps/impact-co2/)  
Or around 2 to 4 times more than a typical Google search. 

</b>.
 
"""
    )

    demo.queue(concurrency_count=16)

demo.launch()