Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,29 +1,16 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import
|
3 |
|
4 |
-
# Load ClinicalBERT model
|
5 |
model_name = "emilyalsentzer/Bio_ClinicalBERT"
|
6 |
-
|
7 |
-
model = AutoModelForMaskedLM.from_pretrained(model_name)
|
8 |
|
9 |
-
# Create a text generation pipeline
|
10 |
-
nlp_pipeline = pipeline("fill-mask", model=model, tokenizer=tokenizer)
|
11 |
-
|
12 |
-
# Function to interact with ClinicalBERT
|
13 |
def medical_chatbot(user_input):
|
14 |
if "[MASK]" not in user_input:
|
15 |
-
|
16 |
-
|
17 |
response = nlp_pipeline(user_input)
|
18 |
-
return response[0]["sequence"]
|
19 |
-
|
20 |
-
# Gradio UI
|
21 |
-
interface = gr.Interface(
|
22 |
-
fn=medical_chatbot,
|
23 |
-
inputs=gr.Textbox(lines=2, placeholder="Enter medical query with [MASK]..."),
|
24 |
-
outputs="text",
|
25 |
-
title="Medical Chatbot",
|
26 |
-
description="Ask medical questions. Example: 'Patient shows symptoms of [MASK]'."
|
27 |
-
)
|
28 |
|
29 |
-
interface
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
|
|
|
4 |
model_name = "emilyalsentzer/Bio_ClinicalBERT"
|
5 |
+
nlp_pipeline = pipeline("fill-mask", model=model_name)
|
|
|
6 |
|
|
|
|
|
|
|
|
|
7 |
def medical_chatbot(user_input):
|
8 |
if "[MASK]" not in user_input:
|
9 |
+
user_input += " [MASK]"
|
10 |
+
|
11 |
response = nlp_pipeline(user_input)
|
12 |
+
return {"prediction": response[0]["sequence"], "confidence": response[0]["score"]}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
+
# Create an API interface
|
15 |
+
interface = gr.Interface(fn=medical_chatbot, inputs="text", outputs="json")
|
16 |
+
interface.launch(share=True)
|