import gradio as gr from huggingface_hub import InferenceClient # Load the ClinicalBERT model MODEL_NAME = "emilyalsentzer/Bio_ClinicalBERT" client = InferenceClient(MODEL_NAME) def respond( message, history, system_message, max_tokens, temperature, top_p, ): if history is None: history = [] messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) # Ensure input includes [MASK] for ClinicalBERT if "[MASK]" not in message: message += " [MASK]" try: response = client.fill_mask(message) prediction = response[0]["sequence"] confidence = response[0]["score"] # Append to history history.append((message, prediction)) return prediction, history # Must return history explicitly as an output except Exception as e: return {"error": str(e)}, history # Create Gradio interface demo = gr.Interface( fn=respond, inputs=[ gr.Textbox(label="User Input"), gr.State(), # Explicit state for history tracking gr.Textbox(value="You are a friendly medical assistant.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"), ], outputs=[ gr.Textbox(label="Model Response"), gr.State(), # Explicit state output ], ) if __name__ == "__main__": demo.launch(share=True)