Spaces:
Runtime error
Runtime error
v1
Browse files- meteor/arch/modeling_internlm2.py +198 -14
meteor/arch/modeling_internlm2.py
CHANGED
|
@@ -43,18 +43,18 @@ from .configuration_internlm2 import InternLM2Config
|
|
| 43 |
logger = logging.get_logger(__name__)
|
| 44 |
|
| 45 |
_CONFIG_FOR_DOC = 'InternLM2Config'
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
|
| 59 |
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
|
| 60 |
def _get_unpad_data(attention_mask):
|
|
@@ -492,12 +492,196 @@ class InternLM2Attention(nn.Module):
|
|
| 492 |
|
| 493 |
return attn_output, attn_weights, past_key_value
|
| 494 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 495 |
class InternLM2DecoderLayer(nn.Module):
|
| 496 |
|
| 497 |
def __init__(self, config: InternLM2Config):
|
| 498 |
super().__init__()
|
| 499 |
self.hidden_size = config.hidden_size
|
| 500 |
-
self.attention =
|
|
|
|
|
|
|
|
|
|
| 501 |
self.feed_forward = InternLM2MLP(config)
|
| 502 |
self.attention_norm = InternLM2RMSNorm(
|
| 503 |
config.hidden_size, eps=config.rms_norm_eps)
|
|
@@ -762,7 +946,7 @@ class InternLM2Model(InternLM2PreTrainedModel):
|
|
| 762 |
|
| 763 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 764 |
|
| 765 |
-
|
| 766 |
|
| 767 |
# retrieve input_ids and inputs_embeds
|
| 768 |
if input_ids is not None and inputs_embeds is not None:
|
|
|
|
| 43 |
logger = logging.get_logger(__name__)
|
| 44 |
|
| 45 |
_CONFIG_FOR_DOC = 'InternLM2Config'
|
| 46 |
+
flash_attn_func, flash_attn_varlen_func = None, None
|
| 47 |
+
pad_input, index_first_axis, unpad_input = None, None, None
|
| 48 |
+
def _import_flash_attn():
|
| 49 |
+
global flash_attn_func, flash_attn_varlen_func
|
| 50 |
+
global pad_input, index_first_axis, unpad_input
|
| 51 |
+
try:
|
| 52 |
+
from flash_attn import flash_attn_func as _flash_attn_func, flash_attn_varlen_func as _flash_attn_varlen_func
|
| 53 |
+
from flash_attn.bert_padding import pad_input as _pad_input, index_first_axis as _index_first_axis, unpad_input as _unpad_input
|
| 54 |
+
flash_attn_func, flash_attn_varlen_func = _flash_attn_func, _flash_attn_varlen_func
|
| 55 |
+
pad_input, index_first_axis, unpad_input = _pad_input, _index_first_axis, _unpad_input
|
| 56 |
+
except ImportError:
|
| 57 |
+
raise ImportError("flash_attn is not installed.")
|
| 58 |
|
| 59 |
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
|
| 60 |
def _get_unpad_data(attention_mask):
|
|
|
|
| 492 |
|
| 493 |
return attn_output, attn_weights, past_key_value
|
| 494 |
|
| 495 |
+
|
| 496 |
+
class InternLM2FlashAttention2(InternLM2Attention):
|
| 497 |
+
"""InternLM2 flash attention module.
|
| 498 |
+
|
| 499 |
+
This module inherits from `InternLM2Attention` as the weights of the module
|
| 500 |
+
stays untouched. The only required change would be on the forward pass
|
| 501 |
+
where it needs to correctly call the public API of flash attention and deal
|
| 502 |
+
with padding tokens in case the input contains any of them.
|
| 503 |
+
"""
|
| 504 |
+
|
| 505 |
+
def forward(
|
| 506 |
+
self,
|
| 507 |
+
hidden_states: torch.Tensor,
|
| 508 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
| 509 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 510 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
| 511 |
+
output_attentions: bool = False,
|
| 512 |
+
use_cache: bool = False,
|
| 513 |
+
im_mask: Optional[Tuple[torch.Tensor]] = None,
|
| 514 |
+
**kwargs,
|
| 515 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor],
|
| 516 |
+
Optional[Tuple[torch.Tensor]]]:
|
| 517 |
+
# InternLM2FlashAttention2 attention does not support output_attentions
|
| 518 |
+
if 'padding_mask' in kwargs:
|
| 519 |
+
warnings.warn(
|
| 520 |
+
'Passing `padding_mask` is deprecated and will be removed in v4.37. '
|
| 521 |
+
'Please make sure use `attention_mask` instead.`')
|
| 522 |
+
|
| 523 |
+
# overwrite attention_mask with padding_mask
|
| 524 |
+
attention_mask = kwargs.pop('padding_mask')
|
| 525 |
+
|
| 526 |
+
output_attentions = False
|
| 527 |
+
|
| 528 |
+
bsz, q_len, _ = hidden_states.size()
|
| 529 |
+
|
| 530 |
+
qkv_states = self.wqkv(hidden_states, im_mask)
|
| 531 |
+
|
| 532 |
+
qkv_states = rearrange(
|
| 533 |
+
qkv_states,
|
| 534 |
+
'b q (h gs d) -> b q h gs d',
|
| 535 |
+
gs=2 + self.num_key_value_groups,
|
| 536 |
+
d=self.head_dim,
|
| 537 |
+
q=q_len,
|
| 538 |
+
)
|
| 539 |
+
|
| 540 |
+
query_states = qkv_states[..., :self.num_key_value_groups, :]
|
| 541 |
+
query_states = rearrange(query_states, 'b q h gs d -> b q (h gs) d')
|
| 542 |
+
key_states = qkv_states[..., -2, :]
|
| 543 |
+
value_states = qkv_states[..., -1, :]
|
| 544 |
+
query_states = query_states.transpose(1, 2)
|
| 545 |
+
key_states = key_states.transpose(1, 2)
|
| 546 |
+
value_states = value_states.transpose(1, 2)
|
| 547 |
+
|
| 548 |
+
kv_seq_len = key_states.shape[-2]
|
| 549 |
+
if past_key_value is not None:
|
| 550 |
+
kv_seq_len += past_key_value[0].shape[-2]
|
| 551 |
+
|
| 552 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
| 553 |
+
|
| 554 |
+
query_states, key_states = apply_rotary_pos_emb(
|
| 555 |
+
query_states, key_states, cos, sin, position_ids)
|
| 556 |
+
|
| 557 |
+
if past_key_value is not None:
|
| 558 |
+
# reuse k, v, self_attention
|
| 559 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
| 560 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
| 561 |
+
|
| 562 |
+
past_key_value = (key_states, value_states) if use_cache else None
|
| 563 |
+
|
| 564 |
+
query_states = query_states.transpose(1, 2)
|
| 565 |
+
key_states = key_states.transpose(1, 2)
|
| 566 |
+
value_states = value_states.transpose(1, 2)
|
| 567 |
+
|
| 568 |
+
attn_output = self._flash_attention_forward(
|
| 569 |
+
query_states,
|
| 570 |
+
key_states,
|
| 571 |
+
value_states,
|
| 572 |
+
attention_mask,
|
| 573 |
+
q_len)
|
| 574 |
+
|
| 575 |
+
attn_output = attn_output.reshape(bsz, q_len,
|
| 576 |
+
self.hidden_size).contiguous()
|
| 577 |
+
attn_output = self.wo(attn_output, im_mask)
|
| 578 |
+
|
| 579 |
+
if not output_attentions:
|
| 580 |
+
attn_weights = None
|
| 581 |
+
|
| 582 |
+
return attn_output, attn_weights, past_key_value
|
| 583 |
+
|
| 584 |
+
def _flash_attention_forward(
|
| 585 |
+
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
|
| 586 |
+
):
|
| 587 |
+
"""
|
| 588 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
| 589 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
| 590 |
+
Args:
|
| 591 |
+
query_states (`torch.Tensor`):
|
| 592 |
+
Input query states to be passed to Flash Attention API
|
| 593 |
+
key_states (`torch.Tensor`):
|
| 594 |
+
Input key states to be passed to Flash Attention API
|
| 595 |
+
value_states (`torch.Tensor`):
|
| 596 |
+
Input value states to be passed to Flash Attention API
|
| 597 |
+
attention_mask (`torch.Tensor`):
|
| 598 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
| 599 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
| 600 |
+
dropout (`int`, *optional*):
|
| 601 |
+
Attention dropout
|
| 602 |
+
softmax_scale (`float`, *optional*):
|
| 603 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
| 604 |
+
"""
|
| 605 |
+
# Contains at least one padding token in the sequence
|
| 606 |
+
causal = self.is_causal and query_length != 1
|
| 607 |
+
if attention_mask is not None:
|
| 608 |
+
batch_size = query_states.shape[0]
|
| 609 |
+
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._unpad_input(
|
| 610 |
+
query_states, key_states, value_states, attention_mask, query_length
|
| 611 |
+
)
|
| 612 |
+
|
| 613 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
| 614 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
| 615 |
+
|
| 616 |
+
attn_output_unpad = flash_attn_varlen_func(
|
| 617 |
+
query_states,
|
| 618 |
+
key_states,
|
| 619 |
+
value_states,
|
| 620 |
+
cu_seqlens_q=cu_seqlens_q,
|
| 621 |
+
cu_seqlens_k=cu_seqlens_k,
|
| 622 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
| 623 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
| 624 |
+
dropout_p=dropout,
|
| 625 |
+
softmax_scale=softmax_scale,
|
| 626 |
+
causal=causal,
|
| 627 |
+
)
|
| 628 |
+
|
| 629 |
+
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
| 630 |
+
else:
|
| 631 |
+
attn_output = flash_attn_func(
|
| 632 |
+
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
|
| 633 |
+
)
|
| 634 |
+
|
| 635 |
+
return attn_output
|
| 636 |
+
|
| 637 |
+
def _unpad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
| 638 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
| 639 |
+
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
| 640 |
+
|
| 641 |
+
key_layer = index_first_axis(
|
| 642 |
+
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
| 643 |
+
)
|
| 644 |
+
value_layer = index_first_axis(
|
| 645 |
+
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
| 646 |
+
)
|
| 647 |
+
|
| 648 |
+
if query_length == kv_seq_len:
|
| 649 |
+
query_layer = index_first_axis(
|
| 650 |
+
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
|
| 651 |
+
)
|
| 652 |
+
cu_seqlens_q = cu_seqlens_k
|
| 653 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
| 654 |
+
indices_q = indices_k
|
| 655 |
+
elif query_length == 1:
|
| 656 |
+
max_seqlen_in_batch_q = 1
|
| 657 |
+
cu_seqlens_q = torch.arange(
|
| 658 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
| 659 |
+
) # There is a memcpy here, that is very bad.
|
| 660 |
+
indices_q = cu_seqlens_q[:-1]
|
| 661 |
+
query_layer = query_layer.squeeze(1)
|
| 662 |
+
else:
|
| 663 |
+
# The -q_len: slice assumes left padding.
|
| 664 |
+
attention_mask = attention_mask[:, -query_length:]
|
| 665 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
| 666 |
+
|
| 667 |
+
return (
|
| 668 |
+
query_layer,
|
| 669 |
+
key_layer,
|
| 670 |
+
value_layer,
|
| 671 |
+
indices_q.to(torch.int64),
|
| 672 |
+
(cu_seqlens_q, cu_seqlens_k),
|
| 673 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
| 674 |
+
)
|
| 675 |
+
|
| 676 |
class InternLM2DecoderLayer(nn.Module):
|
| 677 |
|
| 678 |
def __init__(self, config: InternLM2Config):
|
| 679 |
super().__init__()
|
| 680 |
self.hidden_size = config.hidden_size
|
| 681 |
+
self.attention = (
|
| 682 |
+
InternLM2Attention(config=config)
|
| 683 |
+
if not getattr(config, 'attn_implementation')=="flash_attention_2" else
|
| 684 |
+
InternLM2FlashAttention2(config=config))
|
| 685 |
self.feed_forward = InternLM2MLP(config)
|
| 686 |
self.attention_norm = InternLM2RMSNorm(
|
| 687 |
config.hidden_size, eps=config.rms_norm_eps)
|
|
|
|
| 946 |
|
| 947 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 948 |
|
| 949 |
+
if self.config.attn_implementation: _import_flash_attn()
|
| 950 |
|
| 951 |
# retrieve input_ids and inputs_embeds
|
| 952 |
if input_ids is not None and inputs_embeds is not None:
|