File size: 17,531 Bytes
d0cbcd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
from abc import ABC, abstractmethod

import torch
import torch.nn as nn
import torch.nn.functional as F

from .multimodal_encoder.builder import build_vision_tower, build_gen_vision_tower, build_dit
from .multimodal_projector.builder import build_vision_projector, build_down_projector, build_gen_vision_projector

from blip3o.constants import IGNORE_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, IMAGE_TOKEN_IDX, DEFAULT_IM_START_TOKEN_IDX, DEFAULT_IM_END_TOKEN_IDX, UND_IMAGE_TOKEN_IDX



class blip3oMetaModel:

    def __init__(self, config):
        super(blip3oMetaModel, self).__init__(config)

        if hasattr(config, "mm_vision_tower"):
            # self.vision_tower = build_vision_tower(config, delay_load=True)
            # self.mm_projector = build_vision_projector(config)
            self.down_projector = build_down_projector(config)

            if 'unpad' in getattr(config, 'mm_patch_merge_type', ''):
                self.image_newline = nn.Parameter(
                    torch.empty(config.hidden_size, dtype=self.dtype)
                )


        if hasattr(config, "gen_vision_tower"):
            self.gen_vision_tower = build_gen_vision_tower(config, delay_load=True)
            # self.gen_projector = build_gen_vision_projector(config)
            self.latent_queries = nn.Parameter(torch.randn(1, config.n_query, config.hidden_size))
            print(f" latent query size {self.latent_queries.shape}")

            if 'unpad' in getattr(config, 'mm_patch_merge_type', ''):
                self.image_newline = nn.Parameter(
                    torch.empty(config.hidden_size, dtype=self.dtype)
                )

            self.dit, self.vae, self.noise_scheduler = build_dit(config)


    # def get_vision_tower(self):
    #     vision_tower = getattr(self, 'vision_tower', None)
    #     if type(vision_tower) is list:
    #         vision_tower = vision_tower[0]
    #     return vision_tower


    def get_gen_vision_tower(self):
        gen_vision_tower = getattr(self, 'gen_vision_tower', None)
        if type(gen_vision_tower) is list:
            gen_vision_tower = gen_vision_tower[0]
        return gen_vision_tower


    def initialize_vision_modules(self, model_args, fsdp=None):
        gen_vision_tower = model_args.gen_vision_tower

        mm_vision_select_layer = model_args.mm_vision_select_layer
        mm_vision_select_feature = model_args.mm_vision_select_feature

        pretrain_mm_mlp_adapter = model_args.pretrain_mm_mlp_adapter
        pretrain_gen_mlp_adapter = model_args.pretrain_gen_mlp_adapter

        mm_patch_merge_type = model_args.mm_patch_merge_type

        self.config.gen_vision_tower = gen_vision_tower
        self.config.vision_tower_pretrained = getattr(model_args, "vision_tower_pretrained", "")



        if getattr(self, 'dit', None) is None:
            print("random initiation the DiT !!!")
            self.dit, self.vae, self.noise_scheduler = build_dit(model_args)
        else:
            print("DiT load from checkpoint!!!")
            for p in self.dit.parameters():
                p.requires_grad = True
    

        if self.get_gen_vision_tower() is None:
            gen_vision_tower = build_gen_vision_tower(model_args)

            if fsdp is not None and len(fsdp) > 0:
                self.gen_vision_tower = [gen_vision_tower]
            else:
                self.gen_vision_tower = gen_vision_tower
        else:
            if fsdp is not None and len(fsdp) > 0:
                gen_vision_tower = self.gen_vision_tower[0]
            else:
                gen_vision_tower = self.gen_vision_tower
            gen_vision_tower.load_model()


        self.config.use_mm_proj = True
        self.config.mm_projector_type = getattr(model_args, 'mm_projector_type', 'linear')
        # self.config.gen_projector_type = getattr(model_args, 'gen_projector_type', 'linear')


        self.config.gen_hidden_size = gen_vision_tower.hidden_size

        self.config.mm_vision_select_layer = mm_vision_select_layer
        self.config.mm_vision_select_feature = mm_vision_select_feature
        self.config.mm_patch_merge_type = mm_patch_merge_type
        self.config.n_query = model_args.n_query
        self.config.gen_pooling = model_args.gen_pooling

        # if getattr(self, 'mm_projector', None) is None:
        #     print("random initiation the mm_project !!!")
        #     self.mm_projector = build_vision_projector(self.config)

        #     if 'unpad' in mm_patch_merge_type:
        #         embed_std = 1 / torch.sqrt(torch.tensor(self.config.hidden_size, dtype=self.dtype))
        #         self.image_newline = nn.Parameter(
        #             torch.randn(self.config.hidden_size, dtype=self.dtype) * embed_std
        #         )
        # else:
        #     # In case it is frozen by LoRA
        #     for p in self.mm_projector.parameters():
        #         p.requires_grad = True



        if getattr(self, 'down_projector', None) is None:
            print("random initiation the down_projector !!!")
            self.down_projector = build_down_projector(self.config)
        else:
            # In case it is frozen by LoRA
            for p in self.down_projector.parameters():
                p.requires_grad = True

        if getattr(self, 'latent_queries', None) is None:
            print("random initiation the latent_queries !!!")
            self.latent_queries = nn.Parameter(torch.randn(1, self.config.n_query, self.config.hidden_size))
        else:
            print("latent_queries load from checkpoint!!!")
            self.latent_queries.requires_grad = True


        if pretrain_mm_mlp_adapter is not None:
            mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu')
            def get_w(weights, keyword):
                return {k.split(keyword + '.')[1]: v for k, v in weights.items() if keyword in k}

            # self.mm_projector.load_state_dict(get_w(mm_projector_weights, 'mm_projector'))

        

def unpad_image(tensor, original_size):
    """
    Unpads a PyTorch tensor of a padded and resized image.

    Args:
    tensor (torch.Tensor): The image tensor, assumed to be in CxHxW format.
    original_size (tuple): The original size of PIL image (width, height).

    Returns:
    torch.Tensor: The unpadded image tensor.
    """
    original_width, original_height = original_size
    current_height, current_width = tensor.shape[1:]

    original_aspect_ratio = original_width / original_height
    current_aspect_ratio = current_width / current_height

    if original_aspect_ratio > current_aspect_ratio:
        scale_factor = current_width / original_width
        new_height = int(original_height * scale_factor)
        padding = (current_height - new_height) // 2
        unpadded_tensor = tensor[:, padding:current_height - padding, :]
    else:
        scale_factor = current_height / original_height
        new_width = int(original_width * scale_factor)
        padding = (current_width - new_width) // 2
        unpadded_tensor = tensor[:, :, padding:current_width - padding]

    return unpadded_tensor


class blip3oMetaForCausalLM(ABC):

    @abstractmethod
    def get_model(self):
        pass

    def get_vision_tower(self):
        return self.get_model().get_vision_tower()

    def get_gen_vision_tower(self):
        return self.get_model().get_gen_vision_tower()

    def encode_image(self, images):
        # breakpoint()
        gen_vision_tower = self.get_gen_vision_tower()
        device = gen_vision_tower.device
        images = images.to(device)
        prompt_image_embeds = gen_vision_tower(images)
        if 'early' in self.get_gen_pooling():
            prompt_image_embeds = self.pool_img(prompt_image_embeds)
        num_img, _, c = prompt_image_embeds.shape
        # prompt_image_embeds = prompt_image_embeds.contiguous().view(-1, c)

        # ------------- compute similarity -------
        all_dist = 0
        count = 0
        for i in range(2, prompt_image_embeds.shape[1]-1):
            diff = (prompt_image_embeds[:,i,:].unsqueeze(1) -  prompt_image_embeds[:,:i,:])
            dist = torch.sqrt(diff.square().sum(-1)).min().item()
            all_dist+=dist
            count+=1
        all_dist /= count
        # self.dist = all_dist
        # print(self.dist)

        return prompt_image_embeds

    def get_mm_projector(self):
        return self.get_model().mm_projector

    def get_gen_projector(self):
        return None
    

    def get_n_query(self):
        return self.get_model().config.n_query

    def get_gen_pooling(self):
        return self.get_model().config.gen_pooling

    def pool_img(self, image_features):
        num_img, n, c = image_features.shape
        gen_pooling = self.get_gen_pooling()
        # n_query = self.get_n_query()
        stride = int(gen_pooling.split('_')[-1])
        sqrt_n = int(n**0.5)
        image_features = image_features.permute(0, 2, 1).view(num_img, c, sqrt_n, sqrt_n)
        image_features = F.avg_pool2d(image_features, kernel_size=(stride, stride), stride=stride)
        # image_features = image_features.view(num_img, c, -1).permute(0,2,1).contiguous()
        return image_features

    def get_sigmas(self, timesteps, device, n_dim=4, dtype=torch.float32):
        sigmas = self.get_model().noise_scheduler.sigmas.to(device=device, dtype=dtype)
        schedule_timesteps = self.get_model().noise_scheduler.timesteps.to(device=device)
        timesteps = timesteps.to(device)
        step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps]

        sigma = sigmas[step_indices].flatten()
        while len(sigma.shape) < n_dim:
            sigma = sigma.unsqueeze(-1)
        return sigma

    def mask_drop(self, latents, drop_prob=0.1):
        if drop_prob <= 0:
            return latents
        mask = torch.bernoulli(torch.zeros(latents.shape[0], device=latents.device, dtype=latents.dtype) + drop_prob)
        while len(mask.shape) < len(latents.shape):
            mask = mask.unsqueeze(-1)
        mask = 1 - mask  # need to flip 0 <-> 1
        return latents * mask

    def prepare_inputs_labels_for_multimodal(
        self, input_ids, position_ids, attention_mask, past_key_values, labels,
        gen_images, und_images, grid_thw, i_s_pos, image_sizes=None
    ):
        pad_ids = 128256
        vision_tower = self.visual
        gen_vision_tower = self.get_gen_vision_tower()
        if (gen_images is None and und_images is None) or input_ids.shape[1] == 1:
            return input_ids, position_ids, attention_mask, past_key_values, None, labels, None, None, None
        



        prompt_image_embeds = gen_vision_tower(gen_images) # TODO: check dimension
      
        if 'early' in self.get_gen_pooling():
            prompt_image_embeds = self.pool_img(prompt_image_embeds)
        target_image_embeds = torch.clone(prompt_image_embeds).detach()
        latent_queries = self.get_model().latent_queries.repeat(input_ids.shape[0], 1, 1)
        H = latent_queries.shape[-1]
        latent_queries = latent_queries.contiguous().view(-1, H)
    



        # if not gen_images is None:
        #     prompt_image_embeds = gen_vision_tower(gen_images) # TODO: check dimension
        #     if 'early' in self.get_gen_pooling():
        #         prompt_image_embeds = self.pool_img(prompt_image_embeds)
        #     # num_img, _, c = prompt_image_embeds.shape  # [batch, 729, 1152]
        #     # prompt_image_embeds = prompt_image_embeds.contiguous().view(-1, c)
        #     target_image_embeds = torch.clone(prompt_image_embeds).detach()
        #     # prompt_image_embeds = gen_projector(prompt_image_embeds)
        #     latent_queries = self.get_model().latent_queries.repeat(input_ids.shape[0], 1, 1)
        #     H = latent_queries.shape[-1]
        #     latent_queries = latent_queries.contiguous().view(-1, H)
        # else:
        #     target_image_embeds = None
        #     num_img = und_images.shape[0]
        #     dummy = torch.zeros(num_img, 3, 448, 448 , dtype=und_images.dtype, device=und_images.device) # TODO
        #     temp = gen_vision_tower(dummy)[:,:729,:]
        #     num_img, _, c = temp.shape
        #     temp = temp.contiguous().view(-1, c) * 1e-20
        #     # temp = gen_projector(temp) * 1e-9
        #     latent_queries = self.get_model().latent_queries.repeat(input_ids.shape[0], 1, 1)
        #     H = latent_queries.shape[-1]
        #     latent_queries = latent_queries.contiguous().view(-1, H)


        if not und_images is None:
            und_image_embeds = vision_tower(und_images, grid_thw=grid_thw)
            # _, c = und_image_embeds.shape
            # batch_size = und_images.shape[0]
            # und_image_embeds = und_image_embeds.view(batch_size, -1, c)
            # und_image_embeds = und_image_embeds.contiguous().view(-1, c)
            # und_image_embeds = mm_projector(und_image_embeds)

        # else:
        #     num_img = input_ids.shape[0]
        #     dummy = torch.zeros(num_img, 3, 384, 384 , dtype=gen_images.dtype, device=gen_images.device)  # clip (3, 336, 336) 
        #     temp = vision_tower(dummy)
        #     if 'early' in self.get_gen_pooling():
        #         temp = temp[:,:64,:]
        #     num_img, _, c = temp.shape
        #     temp = temp.contiguous().view(-1, c)
        #     temp = mm_projector(temp) * 1e-20
        #     latent_queries += temp




        
        image_idx = (input_ids == IMAGE_TOKEN_IDX)
        und_image_idx = (input_ids == UND_IMAGE_TOKEN_IDX)
        # img_indicator = torch.clone(image_idx)
        output_indicator = labels != -100
        input_indicator = labels == -100
        # img_loss_indicator = torch.logical_and(output_indicator, image_idx)
        # img_loss_indicator = torch.cat(
        #     [img_loss_indicator[:, 1:], img_loss_indicator[:, :1]], dim=1)
        
        # img_indicator = torch.cat(
        #     [img_indicator[:, 1:], img_indicator[:, :1]], dim=1)
        
        # if not target_image_embeds is None:
        #     target_image_embeds = target_image_embeds[-img_loss_indicator.sum():,:]
        text_embeds = self.get_model().embed_tokens(input_ids)
        # N_QUERY = self.get_n_query()
        gen_img_idx = torch.logical_and(output_indicator, image_idx)
       
        # if not target_image_embeds is None:
        text_embeds = text_embeds.clone() 
        text_embeds[gen_img_idx] = latent_queries
        # text_embeds[gen_img_idx] = prompt_image_embeds.to(text_embeds.device)[:gen_img_idx.sum(),:]
        # target_image_embeds = target_image_embeds.to(text_embeds.device)[:gen_img_idx.sum(),:]

        und_img_idx = torch.logical_and(input_indicator, und_image_idx)
     

        if not und_images is None:
            text_embeds[und_img_idx] = und_image_embeds.to(text_embeds.device)[:und_img_idx.sum(), :]

        labels[image_idx] = -100


        return None, position_ids, attention_mask, past_key_values, text_embeds, labels, target_image_embeds



    def initialize_vision_tokenizer(self, model_args, tokenizer):
        if model_args.mm_use_im_patch_token:
            tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
            self.resize_token_embeddings(len(tokenizer))

        if model_args.mm_use_im_start_end:
            num_new_tokens = tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
            self.resize_token_embeddings(len(tokenizer))

            if num_new_tokens > 0:
                input_embeddings = self.get_input_embeddings().weight.data
                output_embeddings = self.get_output_embeddings().weight.data

                input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
                    dim=0, keepdim=True)
                output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
                    dim=0, keepdim=True)

                input_embeddings[-num_new_tokens:] = input_embeddings_avg
                output_embeddings[-num_new_tokens:] = output_embeddings_avg

            if model_args.tune_mm_mlp_adapter:
                for p in self.get_input_embeddings().parameters():
                    p.requires_grad = True
                for p in self.get_output_embeddings().parameters():
                    p.requires_grad = False

            if model_args.pretrain_mm_mlp_adapter:
                mm_projector_weights = torch.load(model_args.pretrain_mm_mlp_adapter, map_location='cpu')
                embed_tokens_weight = mm_projector_weights['model.embed_tokens.weight']
                assert num_new_tokens == 2
                if input_embeddings.shape == embed_tokens_weight.shape:
                    input_embeddings[-num_new_tokens:] = embed_tokens_weight[-num_new_tokens:]
                elif embed_tokens_weight.shape[0] == num_new_tokens:
                    input_embeddings[-num_new_tokens:] = embed_tokens_weight
                else:
                    raise ValueError(f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}.")
        elif model_args.mm_use_im_patch_token:
            if model_args.tune_mm_mlp_adapter:
                for p in self.get_input_embeddings().parameters():
                    p.requires_grad = False
                for p in self.get_output_embeddings().parameters():
                    p.requires_grad = False