File size: 2,934 Bytes
d0cbcd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import os
from .clip_encoder import CLIPVisionTower
from .imagebind import ImageBindWrapper
from .open_clip_encoder import OpenCLIPVisionTower
from .siglip_encoder import SigLipVisionTower
from .clip_encoder import CLIPVisionTower, CLIPVisionTowerS2

from .eva_clip.eva_clip_encoder import EvaClipVisionTower
from .dev_eva_clip.eva_vit import EvaViTWrapper

from blip3o.model.nextdit_crossattn import NextDiTCrossAttnConfig, NextDiTCrossAttn
from diffusers.models import AutoencoderKL
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler


def build_vision_tower(vision_tower_cfg, **kwargs):
    vision_tower = getattr(vision_tower_cfg, 'mm_vision_tower', getattr(vision_tower_cfg, 'vision_tower', None))
    is_absolute_path_exists = os.path.exists(vision_tower)
    use_s2 = getattr(vision_tower_cfg, 's2', False)
    if "siglip" in vision_tower:
        return SigLipVisionTower(vision_tower, vision_tower_cfg=vision_tower_cfg, **kwargs)
    if "eva" in vision_tower:
        return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs)
    if is_absolute_path_exists or vision_tower.startswith("openai") or vision_tower.startswith("laion") or "ShareGPT4V" in vision_tower:
        if use_s2:
            return CLIPVisionTowerS2(vision_tower, args=vision_tower_cfg, **kwargs)
        else:
            return CLIPVisionTower(vision_tower, args=vision_tower_cfg, **kwargs)

    raise ValueError(f'Unknown vision tower: {vision_tower}')




def build_gen_vision_tower(vision_tower_cfg, **kwargs):
    vision_tower = getattr(vision_tower_cfg, 'gen_vision_tower')
    is_absolute_path_exists = os.path.exists(vision_tower)
    use_s2 = getattr(vision_tower_cfg, 's2', False)
    if "siglip" in vision_tower:
        return SigLipVisionTower(vision_tower, vision_tower_cfg=vision_tower_cfg, **kwargs)
    if "eva" in vision_tower:
        return EvaClipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs)
    if is_absolute_path_exists or vision_tower.startswith("openai") or vision_tower.startswith("laion") or "ShareGPT4V" in vision_tower:
        if use_s2:
            return CLIPVisionTowerS2(vision_tower, args=vision_tower_cfg, **kwargs)
        else:
            return CLIPVisionTower(vision_tower, args=vision_tower_cfg, **kwargs)

    raise ValueError(f'Unknown vision tower: {vision_tower}')



def build_dit(vision_tower_cfg, **kwargs):
    vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae")
    # vae = AutoencoderKL.from_pretrained("stabilityai/sdxl-vae")
    dit = NextDiTCrossAttn(NextDiTCrossAttnConfig())
    noise_scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained("Alpha-VLLM/Lumina-Next-SFT-diffusers", subfolder="scheduler")
    # scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained("Alpha-VLLM/Lumina-Next-SFT-diffusers", subfolder="scheduler")
    vae.eval()
    vae.requires_grad_(False)
    return dit, vae, noise_scheduler