Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import sys | |
import subprocess | |
subprocess.check_call([sys.executable, "-m", "pip", "uninstall", "-y", "deepspeed"]) | |
import random | |
import spaces | |
import numpy as np | |
import torch | |
from PIL import Image | |
import gradio as gr | |
from diffusers import DiffusionPipeline | |
from blip3o.conversation import conv_templates | |
from blip3o.model.builder import load_pretrained_model | |
from blip3o.utils import disable_torch_init | |
from blip3o.mm_utils import get_model_name_from_path | |
from qwen_vl_utils import process_vision_info | |
from huggingface_hub import snapshot_download | |
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoProcessor | |
processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct") | |
# Constants | |
MAX_SEED = 10000 | |
HUB_MODEL_ID = "BLIP3o/BLIP3o-Model-8B" | |
model_snapshot_path = snapshot_download(repo_id=HUB_MODEL_ID) | |
diffusion_path = os.path.join(model_snapshot_path, "diffusion-decoder") | |
def set_global_seed(seed: int = 42): | |
random.seed(seed) | |
np.random.seed(seed) | |
torch.manual_seed(seed) | |
torch.cuda.manual_seed_all(seed) | |
def add_template(prompt_list: list[str]) -> str: | |
conv = conv_templates['qwen'].copy() | |
conv.append_message(conv.roles[0], prompt_list[0]) | |
conv.append_message(conv.roles[1], None) | |
return conv.get_prompt() | |
def make_prompt(text: str) -> list[str]: | |
raw = f"Please generate image based on the following caption: {text}" | |
return [add_template([raw])] | |
def randomize_seed_fn(seed: int, randomize: bool) -> int: | |
return random.randint(0, MAX_SEED) if randomize else seed | |
def generate_image(prompt: str, final_seed: int, guidance_scale: float, images_to_generate: int, progress: gr.Progress = gr.Progress(track_tqdm=True)) -> list[Image.Image]: | |
set_global_seed(final_seed) | |
formatted = make_prompt(prompt) | |
images = [] | |
for _ in range(images_to_generate): | |
out = pipe(formatted, guidance_scale=guidance_scale) | |
images.append(out.image) | |
return images | |
def process_image(prompt: str, img: Image.Image, progress: gr.Progress = gr.Progress(track_tqdm=True)) -> str: | |
messages = [{ | |
"role": "user", | |
"content": [ | |
{"type": "image", "image": img}, | |
{"type": "text", "text": prompt}, | |
], | |
}] | |
# print(messages) # Kept original print for debugging if needed | |
text_prompt_for_qwen = processor.apply_chat_template( | |
messages, tokenize=False, add_generation_prompt=True | |
) | |
image_inputs, video_inputs = process_vision_info(messages) | |
inputs = processor( | |
text=[text_prompt_for_qwen], | |
images=image_inputs, | |
videos=video_inputs, | |
padding=True, | |
return_tensors="pt", | |
).to('cuda') | |
generated_ids = multi_model.generate(**inputs, max_new_tokens=1024) | |
input_token_len = inputs.input_ids.shape[1] | |
generated_ids_trimmed = generated_ids[:, input_token_len:] | |
output_text = processor.batch_decode( | |
generated_ids_trimmed, skip_special_tokens=True, | |
clean_up_tokenization_spaces=False | |
)[0] | |
return output_text | |
print("Diffusion path: ", diffusion_path) | |
# Initialize model + pipeline | |
disable_torch_init() | |
tokenizer, multi_model, _ = load_pretrained_model( | |
model_snapshot_path, None, get_model_name_from_path(model_snapshot_path) | |
) | |
pipe = DiffusionPipeline.from_pretrained( | |
diffusion_path, | |
custom_pipeline="pipeline_llava_gen", | |
torch_dtype=torch.bfloat16, | |
use_safetensors=True, | |
variant="bf16", | |
multimodal_encoder=multi_model, | |
tokenizer=tokenizer, | |
safety_checker=None | |
) | |
pipe.vae.to('cuda') | |
pipe.unet.to('cuda') | |
# Gradio UI | |
with gr.Blocks(title="BLIP3-o") as demo: | |
gr.Markdown('''# BLIP3-o | |
A fully open source unified model for both image understanding and generation, check our Github: https://github.com/JiuhaiChen/BLIP3o and Paper: https://arxiv.org/abs/2505.09568 | |
''') | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Tabs(): | |
with gr.TabItem("Text → Image (Image Generation)"): | |
prompt_gen_input = gr.Textbox( | |
label="Prompt", | |
placeholder="Describe the image you want...", | |
lines=1 | |
) | |
seed_slider = gr.Slider( | |
label="Seed", | |
minimum=0, maximum=int(MAX_SEED), | |
step=1, value=42 | |
) | |
randomize_checkbox = gr.Checkbox( | |
label="Randomize seed", value=False | |
) | |
guidance_slider = gr.Slider( | |
label="Guidance Scale", | |
minimum=1.0, maximum=30.0, | |
step=0.5, value=3.0 | |
) | |
images_to_generate = gr.Slider( | |
label="Number of images", | |
minimum=1, maximum=4, | |
step=1, value=4 | |
) | |
run_image_gen_btn = gr.Button("Generate Image") | |
text_gen_examples_data = [ | |
["A cute cat."], | |
["A young woman with freckles wearing a straw hat, standing in a golden wheat field."], | |
["A group of friends having a picnic in the park."] | |
] | |
gr.Examples( | |
examples=text_gen_examples_data, | |
inputs=[prompt_gen_input], | |
cache_examples=False, # As per original | |
label="Image Generation Examples" | |
) | |
with gr.TabItem("Image → Text (Image Understanding)"): | |
image_understand_input = gr.Image(label="Input Image", type="pil") | |
prompt_understand_input = gr.Textbox( | |
label="Question about image", | |
placeholder="Describe what you want to know about the image (e.g., What is in this image?)", | |
lines=1 | |
) | |
run_image_understand_btn = gr.Button("Understand Image") | |
image_understanding_examples_data = [ | |
["animal-compare.png", "Are these two pictures showing the same kind of animal?"], | |
["funny_image.jpeg", "Why is this image funny?"], | |
["animal-compare.png", "Describe this image in detail."], | |
] | |
gr.Examples( | |
examples=image_understanding_examples_data, | |
inputs=[image_understand_input, prompt_understand_input], | |
cache_examples=False, # As per original | |
label="Image Understanding Examples" | |
) | |
clean_btn = gr.Button("Clear All Inputs/Outputs") | |
with gr.Column(): | |
output_gallery = gr.Gallery(label="Generated Images", columns=2, visible=True) # Default to visible, content will control | |
output_text = gr.Textbox(label="Generated Text", visible=False, lines=5, interactive=False) | |
def run_generate_image_tab(prompt, seed, guidance, num_images, progress=gr.Progress(track_tqdm=True)): | |
# Seed is already finalized by the randomize_seed_fn in the click chain | |
imgs = generate_image(prompt, seed, guidance, num_images, progress=progress) | |
return ( | |
gr.update(value=imgs, visible=True), | |
gr.update(value="", visible=False) | |
) | |
def run_process_image_tab(img, prompt, progress=gr.Progress(track_tqdm=True)): | |
if img is None: | |
return ( | |
gr.update(value=[], visible=False), | |
gr.update(value="Please upload an image for understanding.", visible=True) | |
) | |
txt = process_image(prompt, img, progress=progress) | |
return ( | |
gr.update(value=[], visible=False), | |
gr.update(value=txt, visible=True) | |
) | |
def clean_all_fn(): | |
return ( | |
# Tab 1 inputs | |
gr.update(value=""), # prompt_gen_input | |
gr.update(value=42), # seed_slider | |
gr.update(value=False), # randomize_checkbox | |
gr.update(value=3.0), # guidance_slider | |
# Tab 2 inputs | |
gr.update(value=None), # image_understand_input | |
gr.update(value=""), # prompt_understand_input | |
# Outputs | |
gr.update(value=[], visible=True), # output_gallery (reset and keep visible for next gen) | |
gr.update(value="", visible=False) # output_text (reset and hide) | |
) | |
gen_inputs = [prompt_gen_input, seed_slider, guidance_slider, images_to_generate] | |
run_image_gen_btn.click( | |
fn=randomize_seed_fn, | |
inputs=[seed_slider, randomize_checkbox], | |
outputs=[seed_slider] | |
).then( | |
fn=run_generate_image_tab, | |
inputs=gen_inputs, # prompt_gen_input, seed_slider (updated), guidance_slider | |
outputs=[output_gallery, output_text] | |
) | |
prompt_gen_input.submit( | |
fn=randomize_seed_fn, | |
inputs=[seed_slider, randomize_checkbox], | |
outputs=[seed_slider] | |
).then( | |
fn=run_generate_image_tab, | |
inputs=gen_inputs, | |
outputs=[output_gallery, output_text] | |
) | |
# Event listeners for Image -> Text | |
understand_inputs = [image_understand_input, prompt_understand_input] | |
run_image_understand_btn.click( | |
fn=run_process_image_tab, | |
inputs=understand_inputs, | |
outputs=[output_gallery, output_text] | |
) | |
prompt_understand_input.submit( | |
fn=run_process_image_tab, | |
inputs=understand_inputs, | |
outputs=[output_gallery, output_text] | |
) | |
clean_btn.click( | |
fn=clean_all_fn, | |
inputs=[], | |
outputs=[ | |
prompt_gen_input, seed_slider, randomize_checkbox, guidance_slider, | |
image_understand_input, prompt_understand_input, | |
output_gallery, output_text | |
] | |
) | |
if __name__ == "__main__": | |
demo.launch(share=True) |