Spaces:
Running
on
Zero
Running
on
Zero
# Based on EVA, BEIT, timm and DeiT code bases | |
# https://github.com/baaivision/EVA | |
# https://github.com/rwightman/pytorch-image-models/tree/master/timm | |
# https://github.com/microsoft/unilm/tree/master/beit | |
# https://github.com/facebookresearch/deit/ | |
# https://github.com/facebookresearch/dino | |
# --------------------------------------------------------' | |
# not tested yet | |
import math | |
from transformers import CLIPImageProcessor | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torch.utils.checkpoint as checkpoint | |
from timm.models.layers import drop_path, to_2tuple, trunc_normal_ | |
from .eva_clip import create_model_and_transforms, get_model_config | |
import torch | |
import torchvision | |
import time | |
class EvaViTWrapper(nn.Module): | |
def __init__(self, vision_tower, args, delay_load=False): | |
super().__init__() | |
self.is_loaded = False | |
self.vision_tower_name = vision_tower | |
self.pretrained = args.vision_tower_pretrained | |
self.args = args | |
self.select_layer = args.mm_vision_select_layer | |
if self.select_layer < -1: | |
self.select_layer += 1 | |
self.select_feature = getattr(args, "mm_vision_select_feature", "patch") | |
self.model_config = get_model_config(self.vision_tower_name) | |
if not delay_load: | |
print(f"Loading vision tower: {vision_tower}") | |
self.load_model() | |
elif getattr(args, "unfreeze_mm_vision_tower", False): | |
# TODO: better detector is needed. | |
print(f"The checkpoint seems to contain `vision_tower` weights: `unfreeze_mm_vision_tower`: True.") | |
self.load_model() | |
elif hasattr(args, "mm_tunable_parts") and "mm_vision_tower" in args.mm_tunable_parts: | |
print(f"The checkpoint seems to contain `vision_tower` weights: `mm_tunable_parts` contains `mm_vision_tower`.") | |
self.load_model() | |
def load_model(self): | |
print(f"Loading: {self.vision_tower_name}") | |
print(f"Pretrained: {self.pretrained}") | |
time_start = time.time() | |
model, _, image_processor = create_model_and_transforms(self.vision_tower_name, self.pretrained, force_custom_clip=True, precision="fp16") | |
time_end = time.time() | |
print(f"Loaded: {self.vision_tower_name} in {time_end - time_start:.2f}s") | |
self.device = next(model.parameters()).device | |
self.dtype = next(model.parameters()).dtype | |
if self.device.type != "meta": | |
model = model.to("cuda") | |
self.vision_tower = model.visual | |
resize_transform = [t for t in image_processor.transforms if isinstance(t, torchvision.transforms.Resize)][0] | |
normalize_transform = [t for t in image_processor.transforms if isinstance(t, torchvision.transforms.Normalize)][0] | |
self.resize_transform_size = resize_transform.size | |
self.image_processor = CLIPImageProcessor.from_pretrained( | |
"openai/clip-vit-large-patch14", | |
crop_size=resize_transform.size, | |
size={"shortest_edge": resize_transform.size}, | |
image_mean=list(normalize_transform.mean), | |
image_std=list(normalize_transform.std), | |
) | |
print(f"Loaded image processor: {self.image_processor}") | |
self.vision_tower.requires_grad_(False) | |
self.is_loaded = True | |
def feature_select(self, image_features): | |
select_feature_type = self.select_feature | |
# if self.select_feature in ["slicefour_patch", "slicefour_cls_patch"]: | |
# select_every_k_layer = len(image_features) // 4 | |
# image_features = torch.cat([image_features[i] for i in range(select_every_k_layer + self.select_layer, len(image_features), select_every_k_layer)], dim=-1) | |
# select_feature_type = select_feature_type.replace("slicefour_", "") | |
# elif self.select_feature in ["slice_m25811_f6_patch", "slice_m25811_f6_cls_patch"]: | |
# select_layers = [-1, -4, -7, -10, 6] | |
# image_features = torch.cat([image_features[i] for i in select_layers], dim=-1) | |
# select_feature_type = select_feature_type.replace("slice_m25811_f6_", "") | |
# else: | |
# image_features = image_features[self.select_layer] | |
if select_feature_type == "patch": | |
image_features = image_features[:, 1:] | |
elif select_feature_type == "cls_patch": | |
image_features = image_features | |
else: | |
raise ValueError(f"Unexpected select feature: {select_feature_type}") | |
return image_features | |
def train(self, mode=True): | |
self.training = mode | |
if self.is_loaded: | |
self.vision_tower.eval() | |
def forward(self, images): | |
if type(images) is list: | |
image_features = [] | |
for image in images: | |
image_features = self.vision_tower.forward_features(image.to(self.dtype), return_all_features=True) | |
image_features = self.feature_select(image_features).to(self.dtype) | |
image_features.append(image_features) | |
else: | |
image_features = self.vision_tower.forward_features(images.to(self.dtype), return_all_features=True) | |
image_features = self.feature_select(image_features).to(self.dtype) | |
return image_features | |
def dummy_feature(self): | |
return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype) | |
def hidden_size(self): | |
return self.model_config["vision_cfg"]["width"] | |
def num_patches(self): | |
return (self.model_config["vision_cfg"]["image_size"] // self.model_config["vision_cfg"]["patch_size"]) ** 2 | |
def num_patches_per_side(self): | |
return self.model_config["vision_cfg"]["image_size"] // self.model_config["vision_cfg"]["patch_size"] | |
def config(self): | |
return self.model_config | |
def image_size(self): | |
return self.model_config["vision_cfg"]["image_size"] | |