Spaces:
Running
on
Zero
Running
on
Zero
# -------------------------------------------------------- | |
# Adapted from https://github.com/microsoft/unilm/tree/master/beit | |
# -------------------------------------------------------- | |
import os | |
from functools import partial | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torch.utils.checkpoint import checkpoint | |
try: | |
from timm.models.layers import drop_path, to_2tuple | |
except: | |
from timm.layers import drop_path, to_2tuple | |
try: | |
import xformers.ops as xops | |
except ImportError: | |
xops = None | |
print("Please 'pip install xformers'") | |
class PatchDropout(nn.Module): | |
""" | |
https://arxiv.org/abs/2212.00794 | |
""" | |
def __init__(self, prob, exclude_first_token=True): | |
super().__init__() | |
assert 0 <= prob < 1. | |
self.prob = prob | |
self.exclude_first_token = exclude_first_token # exclude CLS token | |
print(f"os.getenv('RoPE')={os.getenv('RoPE')}") | |
def forward(self, x): | |
if not self.training or self.prob == 0.: | |
return x | |
if self.exclude_first_token: | |
cls_tokens, x = x[:, :1], x[:, 1:] | |
else: | |
cls_tokens = torch.jit.annotate(torch.Tensor, x[:, :1]) | |
batch = x.size()[0] | |
num_tokens = x.size()[1] | |
batch_indices = torch.arange(batch) | |
batch_indices = batch_indices[..., None] | |
keep_prob = 1 - self.prob | |
num_patches_keep = max(1, int(num_tokens * keep_prob)) | |
rand = torch.randn(batch, num_tokens) | |
patch_indices_keep = rand.topk(num_patches_keep, dim=-1).indices | |
x = x[batch_indices, patch_indices_keep] | |
if self.exclude_first_token: | |
x = torch.cat((cls_tokens, x), dim=1) | |
if self.training and os.getenv('RoPE') == '1': | |
return x, patch_indices_keep | |
return x | |
class DropPath(nn.Module): | |
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). | |
""" | |
def __init__(self, drop_prob=None): | |
super(DropPath, self).__init__() | |
self.drop_prob = drop_prob | |
def forward(self, x): | |
return drop_path(x, self.drop_prob, self.training) | |
def extra_repr(self) -> str: | |
return 'p={}'.format(self.drop_prob) | |
class Mlp(nn.Module): | |
def __init__( | |
self, | |
in_features, | |
hidden_features=None, | |
out_features=None, | |
act_layer=nn.GELU, | |
norm_layer=nn.LayerNorm, | |
drop=0., | |
subln=False, | |
): | |
super().__init__() | |
out_features = out_features or in_features | |
hidden_features = hidden_features or in_features | |
self.fc1 = nn.Linear(in_features, hidden_features) | |
self.act = act_layer() | |
self.ffn_ln = norm_layer(hidden_features) if subln else nn.Identity() | |
self.fc2 = nn.Linear(hidden_features, out_features) | |
self.drop = nn.Dropout(drop) | |
def forward(self, x): | |
x = self.fc1(x) | |
x = self.act(x) | |
# x = self.drop(x) | |
# commit this for the orignal BERT implement | |
x = self.ffn_ln(x) | |
x = self.fc2(x) | |
x = self.drop(x) | |
return x | |
class SwiGLU(nn.Module): | |
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.SiLU, drop=0., | |
norm_layer=nn.LayerNorm, subln=False): | |
super().__init__() | |
out_features = out_features or in_features | |
hidden_features = hidden_features or in_features | |
self.w1 = nn.Linear(in_features, hidden_features) | |
self.w2 = nn.Linear(in_features, hidden_features) | |
self.act = act_layer() | |
self.ffn_ln = norm_layer(hidden_features) if subln else nn.Identity() | |
self.w3 = nn.Linear(hidden_features, out_features) | |
self.drop = nn.Dropout(drop) | |
def forward(self, x): | |
x1 = self.w1(x) | |
x2 = self.w2(x) | |
hidden = self.act(x1) * x2 | |
x = self.ffn_ln(hidden) | |
x = self.w3(x) | |
x = self.drop(x) | |
return x | |
class Attention(nn.Module): | |
def __init__( | |
self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., | |
proj_drop=0., window_size=None, attn_head_dim=None, xattn=False, rope=None, subln=False, norm_layer=nn.LayerNorm): | |
super().__init__() | |
self.num_heads = num_heads | |
head_dim = dim // num_heads | |
if attn_head_dim is not None: | |
head_dim = attn_head_dim | |
all_head_dim = head_dim * self.num_heads | |
self.scale = qk_scale or head_dim ** -0.5 | |
self.subln = subln | |
if self.subln: | |
self.q_proj = nn.Linear(dim, all_head_dim, bias=False) | |
self.k_proj = nn.Linear(dim, all_head_dim, bias=False) | |
self.v_proj = nn.Linear(dim, all_head_dim, bias=False) | |
else: | |
if qkv_bias: | |
self.qkv = nn.Linear(dim, all_head_dim * 3, bias=True) | |
else: | |
self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False) | |
# if qkv_bias: | |
# self.q_bias = nn.Parameter(torch.zeros(all_head_dim)) | |
# self.v_bias = nn.Parameter(torch.zeros(all_head_dim)) | |
# else: | |
# self.q_bias = None | |
# self.v_bias = None | |
self.window_size = None | |
self.relative_position_bias_table = None | |
self.relative_position_index = None | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.inner_attn_ln = norm_layer(all_head_dim) if subln else nn.Identity() | |
# self.proj = nn.Linear(all_head_dim, all_head_dim) | |
self.proj = nn.Linear(all_head_dim, dim) | |
self.proj_drop = nn.Dropout(proj_drop) | |
self.xattn = xattn | |
self.xattn_drop = attn_drop | |
self.rope = rope | |
def forward(self, x, rel_pos_bias=None, attn_mask=None): | |
B, N, C = x.shape | |
if self.subln: | |
q = F.linear(input=x, weight=self.q_proj.weight, bias=self.q_bias) | |
k = F.linear(input=x, weight=self.k_proj.weight, bias=None) | |
v = F.linear(input=x, weight=self.v_proj.weight, bias=self.v_bias) | |
q = q.reshape(B, N, self.num_heads, -1).permute(0, 2, 1, 3) # B, num_heads, N, C | |
k = k.reshape(B, N, self.num_heads, -1).permute(0, 2, 1, 3) | |
v = v.reshape(B, N, self.num_heads, -1).permute(0, 2, 1, 3) | |
else: | |
# qkv_bias = None | |
# if self.q_bias is not None: | |
# qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias)) | |
# qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias) | |
qkv = self.qkv(x) | |
qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) # 3, B, num_heads, N, C | |
q, k, v = qkv[0], qkv[1], qkv[2] | |
if self.rope: | |
q_t = q[:, :, 1:, :] | |
ro_q_t = self.rope(q_t) | |
q = torch.cat((q[:, :, :1, :], ro_q_t), -2).type_as(v) | |
k_t = k[:, :, 1:, :] | |
ro_k_t = self.rope(k_t) | |
k = torch.cat((k[:, :, :1, :], ro_k_t), -2).type_as(v) | |
if self.xattn: | |
q = q.permute(0, 2, 1, 3) # B, num_heads, N, C -> B, N, num_heads, C | |
k = k.permute(0, 2, 1, 3) | |
v = v.permute(0, 2, 1, 3) | |
x = xops.memory_efficient_attention( | |
q, k, v, | |
p=self.xattn_drop, | |
scale=self.scale, | |
) | |
x = x.reshape(B, N, -1) | |
x = self.inner_attn_ln(x) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
else: | |
q = q * self.scale | |
attn = (q @ k.transpose(-2, -1)) | |
if self.relative_position_bias_table is not None: | |
relative_position_bias = \ | |
self.relative_position_bias_table[self.relative_position_index.view(-1)].view( | |
self.window_size[0] * self.window_size[1] + 1, | |
self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH | |
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww | |
attn = attn + relative_position_bias.unsqueeze(0).type_as(attn) | |
if rel_pos_bias is not None: | |
attn = attn + rel_pos_bias.type_as(attn) | |
if attn_mask is not None: | |
attn_mask = attn_mask.bool() | |
attn = attn.masked_fill(~attn_mask[:, None, None, :], float("-inf")) | |
attn = attn.softmax(dim=-1) | |
attn = self.attn_drop(attn) | |
x = (attn @ v).transpose(1, 2).reshape(B, N, -1) | |
x = self.inner_attn_ln(x) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |
class Block(nn.Module): | |
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., | |
drop_path=0., init_values=None, act_layer=nn.GELU, norm_layer=nn.LayerNorm, | |
window_size=None, attn_head_dim=None, xattn=False, rope=None, postnorm=False, | |
subln=False, naiveswiglu=False): | |
super().__init__() | |
self.norm1 = norm_layer(dim) | |
self.attn = Attention( | |
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, | |
attn_drop=attn_drop, proj_drop=drop, window_size=window_size, attn_head_dim=attn_head_dim, | |
xattn=xattn, rope=rope, subln=subln, norm_layer=norm_layer) | |
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here | |
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
self.norm2 = norm_layer(dim) | |
mlp_hidden_dim = int(dim * mlp_ratio) | |
if naiveswiglu: | |
self.mlp = SwiGLU( | |
in_features=dim, | |
hidden_features=mlp_hidden_dim, | |
subln=subln, | |
norm_layer=norm_layer, | |
) | |
else: | |
self.mlp = Mlp( | |
in_features=dim, | |
hidden_features=mlp_hidden_dim, | |
act_layer=act_layer, | |
subln=subln, | |
drop=drop | |
) | |
if init_values is not None and init_values > 0: | |
self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True) | |
self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True) | |
else: | |
self.gamma_1, self.gamma_2 = None, None | |
self.postnorm = postnorm | |
def forward(self, x, rel_pos_bias=None, attn_mask=None): | |
if self.gamma_1 is None: | |
if self.postnorm: | |
x = x + self.drop_path(self.norm1(self.attn(x, rel_pos_bias=rel_pos_bias, attn_mask=attn_mask))) | |
x = x + self.drop_path(self.norm2(self.mlp(x))) | |
else: | |
x = x + self.drop_path(self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias, attn_mask=attn_mask)) | |
x = x + self.drop_path(self.mlp(self.norm2(x))) | |
else: | |
if self.postnorm: | |
x = x + self.drop_path(self.gamma_1 * self.norm1(self.attn(x, rel_pos_bias=rel_pos_bias, attn_mask=attn_mask))) | |
x = x + self.drop_path(self.gamma_2 * self.norm2(self.mlp(x))) | |
else: | |
x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias, attn_mask=attn_mask)) | |
x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x))) | |
return x | |
class PatchEmbed(nn.Module): | |
""" Image to Patch Embedding | |
""" | |
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768): | |
super().__init__() | |
img_size = to_2tuple(img_size) | |
patch_size = to_2tuple(patch_size) | |
num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) | |
self.patch_shape = (img_size[0] // patch_size[0], img_size[1] // patch_size[1]) | |
self.img_size = img_size | |
self.patch_size = patch_size | |
self.num_patches = num_patches | |
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) | |
def forward(self, x, **kwargs): | |
B, C, H, W = x.shape | |
# FIXME look at relaxing size constraints | |
assert H == self.img_size[0] and W == self.img_size[1], \ | |
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." | |
x = self.proj(x).flatten(2).transpose(1, 2) | |
return x | |
class EVAVisionTransformer(nn.Module): | |
""" Vision Transformer with support for patch or hybrid CNN input stage | |
""" | |
def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12, | |
num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0., | |
drop_path_rate=0., norm_layer=nn.LayerNorm, init_values=None, patch_dropout=0., | |
use_abs_pos_emb=True, use_rel_pos_bias=False, use_shared_rel_pos_bias=False, rope=False, | |
use_mean_pooling=True, init_scale=0.001, grad_checkpointing=False, xattn=False, postnorm=False, | |
pt_hw_seq_len=16, intp_freq=False, naiveswiglu=False, subln=False, | |
): | |
super().__init__() | |
self.image_size = img_size | |
# self.num_classes = num_classes | |
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models | |
self.patch_embed = PatchEmbed( | |
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) | |
num_patches = self.patch_embed.num_patches | |
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) | |
if use_abs_pos_emb: | |
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) | |
else: | |
self.pos_embed = None | |
self.pos_drop = nn.Dropout(p=drop_rate) | |
self.rel_pos_bias = None | |
self.rope = None | |
self.naiveswiglu = naiveswiglu | |
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule | |
self.use_rel_pos_bias = use_rel_pos_bias | |
self.blocks = nn.ModuleList([ | |
Block( | |
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, | |
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, | |
init_values=init_values, window_size=self.patch_embed.patch_shape if use_rel_pos_bias else None, | |
xattn=xattn, rope=self.rope, postnorm=postnorm, subln=subln, naiveswiglu=naiveswiglu) | |
for i in range(depth)]) | |
# setting a patch_dropout of 0. would mean it is disabled and this function would be the identity fn | |
self.patch_dropout = PatchDropout(patch_dropout) if patch_dropout > 0. else nn.Identity() | |
self.grad_checkpointing = grad_checkpointing | |
def get_num_layers(self): | |
return len(self.blocks) | |
def lock(self, unlocked_groups=0, freeze_bn_stats=False): | |
assert unlocked_groups == 0, 'partial locking not currently supported for this model' | |
for param in self.parameters(): | |
param.requires_grad = False | |
def set_grad_checkpointing(self, enable=True): | |
self.grad_checkpointing = enable | |
def no_weight_decay(self): | |
return {'pos_embed', 'cls_token'} | |
def forward_features(self, x): | |
x = self.patch_embed(x) | |
batch_size, seq_len, _ = x.size() | |
cls_tokens = self.cls_token.expand(batch_size, -1, -1) # stole cls_tokens impl from Phil Wang, thanks | |
x = torch.cat((cls_tokens, x), dim=1) | |
if self.pos_embed is not None: | |
x = x + self.pos_embed | |
x = self.pos_drop(x) | |
# a patch_dropout of 0. would mean it is disabled and this function would do nothing but return what was passed in | |
if os.getenv('RoPE') == '1': | |
if self.training and not isinstance(self.patch_dropout, nn.Identity): | |
x, patch_indices_keep = self.patch_dropout(x) | |
self.rope.forward = partial(self.rope.forward, patch_indices_keep=patch_indices_keep) | |
else: | |
self.rope.forward = partial(self.rope.forward, patch_indices_keep=None) | |
x = self.patch_dropout(x) | |
else: | |
x = self.patch_dropout(x) | |
rel_pos_bias = None | |
for blk in self.blocks: | |
if self.grad_checkpointing: | |
x = checkpoint(blk, x, (rel_pos_bias,)) | |
else: | |
x = blk(x, rel_pos_bias=rel_pos_bias) | |
return x | |
def forward(self, x): | |
""" | |
:return: | |
forward_features function returns raw features of ViT, | |
forward with return_all_features returns normalized features of ViT | |
:param x: | |
:param return_all_features: | |
""" | |
features = self.forward_features(x) # [B, n_patch, C] | |
return features |