Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import io | |
import copy | |
from dataclasses import dataclass, field | |
import json | |
import logging | |
import pathlib | |
from typing import Dict, Optional, Sequence, List | |
import time | |
import torch, gc | |
import glob | |
import transformers | |
import tokenizers | |
import random | |
from blip3o.constants import IGNORE_INDEX, DEFAULT_IMAGE_TOKEN, IMAGE_TOKEN_IDX | |
from torch.utils.data import Dataset | |
from blip3o.train.blip3o_trainer import blip3oTrainer | |
from blip3o import conversation as conversation_lib | |
from blip3o.model import * | |
from blip3o.mm_utils import tokenizer_image_token | |
from PIL import Image, ImageFile | |
from datasets import load_dataset, concatenate_datasets | |
from pathlib import Path | |
from datasets.utils.logging import set_verbosity_info | |
from transformers import logging as tf_logging | |
import torchvision.transforms as T | |
from torchvision.transforms.functional import InterpolationMode | |
from transformers import AutoProcessor | |
ImageFile.LOAD_TRUNCATED_IMAGES = True | |
transform_und_images = T.Compose([T.Resize(448, interpolation=InterpolationMode.BICUBIC, antialias=True), T.CenterCrop(448)]) | |
set_verbosity_info() | |
tf_logging.set_verbosity_info() | |
local_rank = None | |
def rank0_print(*args): | |
if local_rank == 0: | |
print(*args) | |
from packaging import version | |
IS_TOKENIZER_GREATER_THAN_0_14 = version.parse(tokenizers.__version__) >= version.parse("0.14") | |
class ModelArguments: | |
model_name_or_path: Optional[str] = field(default="facebook/opt-125m") | |
version: Optional[str] = field(default="v0") | |
freeze_backbone: bool = field(default=True) | |
tune_mm_mlp_adapter: bool = field(default=False) | |
vision_tower: Optional[str] = field(default=None) | |
gen_vision_tower: Optional[str] = field(default=None) | |
mm_vision_select_layer: Optional[int] = field(default=-1) # default to the last layer | |
pretrain_mm_mlp_adapter: Optional[str] = field(default=None) | |
pretrain_gen_mlp_adapter: Optional[str] = field(default=None) | |
vision_tower_pretrained: Optional[str] = field(default=None) | |
mm_projector_type: Optional[str] = field(default="linear") | |
gen_projector_type: Optional[str] = field(default="linear") | |
mm_use_im_start_end: bool = field(default=False) | |
mm_use_im_patch_token: bool = field(default=True) | |
mm_patch_merge_type: Optional[str] = field(default="flat") | |
mm_vision_select_feature: Optional[str] = field(default="patch") | |
n_query: Optional[int] = field(default=729) # clip 576, siglip 729 | |
n_und_query: Optional[int] = field(default=729) # clip 576, siglip 729 | |
gen_pooling: Optional[str] = field(default="all") # options are: pool2d_3, pool2d_9, seq_3, seq_9, seq_27 | |
class DataArguments: | |
data_path: str = field(default=None, metadata={"help": "Path to the training data."}) | |
lazy_preprocess: bool = False | |
is_multimodal: bool = False | |
image_folder: Optional[str] = field(default=None) | |
shortcaption_image_folder: Optional[str] = field(default=None) | |
data_type: Optional[str] = field(default="mix") | |
image_aspect_ratio: str = "square" | |
class TrainingArguments(transformers.TrainingArguments): | |
cache_dir: Optional[str] = field(default=None) | |
optim: str = field(default="adamw_torch") | |
remove_unused_columns: bool = field(default=False) | |
freeze_mm_mlp_adapter: bool = field(default=False) | |
mpt_attn_impl: Optional[str] = field(default="triton") | |
model_max_length: int = field( | |
default=512, | |
metadata={"help": "Maximum sequence length. Sequences will be right padded (and possibly truncated)."}, | |
) | |
double_quant: bool = field( | |
default=True, | |
metadata={"help": "Compress the quantization statistics through double quantization."}, | |
) | |
quant_type: str = field( | |
default="nf4", | |
metadata={"help": "Quantization data type to use. Should be one of `fp4` or `nf4`."}, | |
) | |
bits: int = field(default=16, metadata={"help": "How many bits to use."}) | |
lora_enable: bool = False | |
lora_r: int = 64 | |
lora_alpha: int = 16 | |
lora_dropout: float = 0.05 | |
lora_weight_path: str = "" | |
lora_bias: str = "none" | |
mm_projector_lr: Optional[float] = None | |
group_by_modality_length: bool = field(default=False) | |
def maybe_zero_3(param, ignore_status=False, name=None): | |
from deepspeed import zero | |
from deepspeed.runtime.zero.partition_parameters import ZeroParamStatus | |
if hasattr(param, "ds_id"): | |
if param.ds_status == ZeroParamStatus.NOT_AVAILABLE: | |
if not ignore_status: | |
logging.warning(f"{name}: param.ds_status != ZeroParamStatus.NOT_AVAILABLE: {param.ds_status}") | |
with zero.GatheredParameters([param]): | |
param = param.data.detach().cpu().clone() | |
else: | |
param = param.detach().cpu().clone() | |
return param | |
# Borrowed from peft.utils.get_peft_model_state_dict | |
def get_peft_state_maybe_zero_3(named_params, bias): | |
if bias == "none": | |
to_return = {k: t for k, t in named_params if "lora_" in k} | |
elif bias == "all": | |
to_return = {k: t for k, t in named_params if "lora_" in k or "bias" in k} | |
elif bias == "lora_only": | |
to_return = {} | |
maybe_lora_bias = {} | |
lora_bias_names = set() | |
for k, t in named_params: | |
if "lora_" in k: | |
to_return[k] = t | |
bias_name = k.split("lora_")[0] + "bias" | |
lora_bias_names.add(bias_name) | |
elif "bias" in k: | |
maybe_lora_bias[k] = t | |
for k, t in maybe_lora_bias: | |
if bias_name in lora_bias_names: | |
to_return[bias_name] = t | |
else: | |
raise NotImplementedError | |
to_return = {k: maybe_zero_3(v, ignore_status=True) for k, v in to_return.items()} | |
return to_return | |
def get_peft_state_non_lora_maybe_zero_3(named_params, require_grad_only=True): | |
to_return = {k: t for k, t in named_params if "lora_" not in k} | |
if require_grad_only: | |
to_return = {k: t for k, t in to_return.items() if t.requires_grad} | |
to_return = {k: maybe_zero_3(v, ignore_status=True).cpu() for k, v in to_return.items()} | |
return to_return | |
def get_mm_adapter_state_maybe_zero_3(named_params, keys_to_match): | |
to_return = {k: t for k, t in named_params if any(key_match in k for key_match in keys_to_match)} | |
to_return = {k: maybe_zero_3(v, ignore_status=True).cpu() for k, v in to_return.items()} | |
return to_return | |
def get_vision_tower_state_maybe_zero_3(named_params, keys_to_match=[""]): | |
to_return = {k: t for k, t in named_params if any(key_match in k for key_match in keys_to_match)} | |
to_return = {k: maybe_zero_3(v, ignore_status=True).cpu() for k, v in to_return.items()} | |
return to_return | |
def find_all_linear_names(model): | |
cls = torch.nn.Linear | |
lora_module_names = set() | |
multimodal_keywords = ["mm_projector", "vision_tower", "vision_resampler"] | |
for name, module in model.named_modules(): | |
if any(mm_keyword in name for mm_keyword in multimodal_keywords): | |
continue | |
if isinstance(module, cls): | |
names = name.split(".") | |
lora_module_names.add(names[0] if len(names) == 1 else names[-1]) | |
if "lm_head" in lora_module_names: # needed for 16-bit | |
lora_module_names.remove("lm_head") | |
return list(lora_module_names) | |
def safe_save_model_for_hf_trainer(trainer: transformers.Trainer, output_dir: str, vision_tower: str): | |
"""Collects the state dict and dump to disk.""" | |
# if getattr(trainer.args, "tune_vision_model", False): | |
if trainer.deepspeed: | |
torch.cuda.synchronize() | |
# Only save Adapter | |
keys_to_match = ["mm_projector"] | |
if getattr(trainer.args, "use_im_start_end", False): | |
keys_to_match.extend(["embed_tokens", "embed_in"]) | |
weight_to_save = get_mm_adapter_state_maybe_zero_3(trainer.model.named_parameters(), keys_to_match) | |
trainer.model.config.save_pretrained(output_dir) | |
current_folder = output_dir.split("/")[-1] | |
parent_folder = os.path.dirname(output_dir) | |
if trainer.args.local_rank == 0 or trainer.args.local_rank == -1: | |
if current_folder.startswith("checkpoint-"): | |
mm_projector_folder = os.path.join(parent_folder, "mm_projector") | |
os.makedirs(mm_projector_folder, exist_ok=True) | |
torch.save( | |
weight_to_save, | |
os.path.join(mm_projector_folder, f"{current_folder}.bin"), | |
) | |
else: | |
torch.save(weight_to_save, os.path.join(output_dir, f"mm_projector.bin")) | |
keys_to_match = ["gen_projector"] | |
if getattr(trainer.args, "use_im_start_end", False): | |
keys_to_match.extend(["embed_tokens", "embed_in"]) | |
weight_to_save = get_mm_adapter_state_maybe_zero_3(trainer.model.named_parameters(), keys_to_match) | |
trainer.model.config.save_pretrained(output_dir) | |
current_folder = output_dir.split("/")[-1] | |
parent_folder = os.path.dirname(output_dir) | |
if trainer.args.local_rank == 0 or trainer.args.local_rank == -1: | |
if current_folder.startswith("checkpoint-"): | |
mm_projector_folder = os.path.join(parent_folder, "gen_projector") | |
os.makedirs(mm_projector_folder, exist_ok=True) | |
torch.save( | |
weight_to_save, | |
os.path.join(mm_projector_folder, f"{current_folder}.bin"), | |
) | |
else: | |
torch.save(weight_to_save, os.path.join(output_dir, f"gen_projector.bin")) | |
if trainer.deepspeed: | |
torch.cuda.synchronize() | |
trainer.save_model(output_dir) | |
return | |
state_dict = trainer.model.state_dict() | |
if trainer.args.should_save: | |
cpu_state_dict = {key: value.cpu() for key, value in state_dict.items()} | |
del state_dict | |
trainer._save(output_dir, state_dict=cpu_state_dict) # noqa | |
def smart_tokenizer_and_embedding_resize( | |
special_tokens_dict: Dict, | |
tokenizer: transformers.PreTrainedTokenizer, | |
model: transformers.PreTrainedModel, | |
): | |
num_new_tokens = tokenizer.add_special_tokens(special_tokens_dict) | |
model.resize_token_embeddings(len(tokenizer)) | |
if num_new_tokens > 0: | |
input_embeddings = model.get_input_embeddings().weight.data | |
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True) | |
input_embeddings[-num_new_tokens:] = input_embeddings_avg | |
def _tokenize_fn(strings: Sequence[str], tokenizer: transformers.PreTrainedTokenizer) -> Dict: | |
"""Tokenize a list of strings.""" | |
tokenized_list = [ | |
tokenizer( | |
text, | |
return_tensors="pt", | |
padding="longest", | |
max_length=tokenizer.model_max_length, | |
truncation=True, | |
) | |
for text in strings | |
] | |
input_ids = labels = [tokenized.input_ids[0] for tokenized in tokenized_list] | |
input_ids_lens = labels_lens = [tokenized.input_ids.ne(tokenizer.pad_token_id).sum().item() for tokenized in tokenized_list] | |
return dict( | |
input_ids=input_ids, | |
labels=labels, | |
input_ids_lens=input_ids_lens, | |
labels_lens=labels_lens, | |
) | |
def _mask_targets(target, tokenized_lens, speakers): | |
# cur_idx = 0 | |
cur_idx = tokenized_lens[0] | |
tokenized_lens = tokenized_lens[1:] | |
target[:cur_idx] = IGNORE_INDEX | |
for tokenized_len, speaker in zip(tokenized_lens, speakers): | |
if speaker == "human": | |
target[cur_idx + 2 : cur_idx + tokenized_len] = IGNORE_INDEX | |
cur_idx += tokenized_len | |
def _add_speaker_and_signal(header, source, get_conversation=True): | |
"""Add speaker and start/end signal on each round.""" | |
BEGIN_SIGNAL = "### " | |
END_SIGNAL = "\n" | |
conversation = header | |
for sentence in source: | |
from_str = sentence["from"] | |
if from_str.lower() == "human": | |
from_str = conversation_lib.default_conversation.roles[0] | |
elif from_str.lower() == "gpt": | |
from_str = conversation_lib.default_conversation.roles[1] | |
else: | |
from_str = "unknown" | |
sentence["value"] = BEGIN_SIGNAL + from_str + ": " + sentence["value"] + END_SIGNAL | |
if get_conversation: | |
conversation += sentence["value"] | |
conversation += BEGIN_SIGNAL | |
return conversation | |
def preprocess_multimodal(sources: Sequence[str], data_args: DataArguments) -> Dict: | |
is_multimodal = data_args.is_multimodal | |
if not is_multimodal: | |
return sources | |
und_placeholder = "<|vision_start|>" + "<|image_pad|>" * data_args.n_und_query + "<|vision_end|>" | |
gen_placeholder = "" | |
# "[IMG]" + "<image>" * data_args.n_query + "[/IMG]" | |
inst_type = None | |
for source in sources: # [instance] | |
for sentence in source: | |
if sentence["from"] == "human" and "<image>" in sentence["value"]: | |
sentence["value"] = sentence["value"].replace(DEFAULT_IMAGE_TOKEN, und_placeholder).strip() | |
inst_type = "und" | |
elif sentence["from"] == "gpt" and "<image>" in sentence["value"]: | |
sentence["value"] = sentence["value"].replace(DEFAULT_IMAGE_TOKEN, gen_placeholder).strip() | |
inst_type = "gen" | |
return sources, inst_type | |
def preprocess_qwen(sources, tokenizer: transformers.PreTrainedTokenizer, has_image: bool = False, max_len=2048, system_message: str = "You are a helpful assistant.") -> Dict: | |
roles = {"human": "user", "gpt": "assistant"} | |
tokenizer = copy.deepcopy(tokenizer) | |
chat_template = "{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}" | |
tokenizer.chat_template = chat_template | |
# Apply prompt templates | |
input_ids, targets = [], [] | |
for i, source in enumerate(sources): | |
if roles[source[0]["from"]] != roles["human"]: | |
source = source[1:] | |
input_id, target = [], [] | |
# New version, use apply chat template | |
# Build system message for each sentence | |
input_id += tokenizer.apply_chat_template([{"role" : "system", "content" : system_message}]) | |
target += [IGNORE_INDEX] * len(input_id) | |
for conv in source: | |
try: | |
role = conv["role"] | |
content = conv["content"] | |
except: | |
role = conv["from"] | |
content = conv["value"] | |
role = roles.get(role, role) | |
conv = [{"role" : role, "content" : content}] | |
encode_id = tokenizer.apply_chat_template(conv) | |
input_id += encode_id | |
if role in ["user", "system"]: | |
target += [IGNORE_INDEX] * len(encode_id) | |
else: | |
target += encode_id | |
assert len(input_id) == len(target), f"{len(input_id)} != {len(target)}" | |
input_ids.append(input_id) | |
targets.append(target) | |
input_ids = torch.tensor(input_ids, dtype=torch.long) | |
targets = torch.tensor(targets, dtype=torch.long) | |
return dict( | |
input_ids=input_ids, # tensor(bs x seq_len) | |
labels=targets, # tensor(bs x seq_len) | |
) | |
def preprocess_llama3( | |
sources, | |
tokenizer: transformers.PreTrainedTokenizer, | |
has_image: bool = False, | |
max_len=2048, | |
system_message: str = "You are a helpful language and vision assistant. You are able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language.", | |
) -> Dict: | |
# roles = {"human": "<|start_header_id|>user<|end_header_id|>", "gpt": "<|start_header_id|>assistant<|end_header_id|>"} | |
roles = {"human": "user", "gpt": "assistant"} | |
# Add image tokens to tokenizer as a special tokens | |
# Use a deepcopy of tokenizer so that we don't modify on the tokenizer | |
tokenizer = copy.deepcopy(tokenizer) | |
# When there is actually an image, we add the image tokens as a special token | |
if has_image: | |
tokenizer.add_tokens(["<image>"], special_tokens=True) | |
image_token_index = tokenizer.convert_tokens_to_ids("<image>") | |
bos_token_id = tokenizer.convert_tokens_to_ids("<|begin_of_text|>") | |
start_header_id = tokenizer.convert_tokens_to_ids("<|start_header_id|>") | |
end_header_id = tokenizer.convert_tokens_to_ids("<|end_header_id|>") | |
eot_id = tokenizer.convert_tokens_to_ids("<|eot_id|>") | |
unmask_tokens = ["<|begin_of_text|>", "<|start_header_id|>", "<|end_header_id|>", "<|eot_id|>", "\n\n"] | |
unmask_tokens_idx = [tokenizer.convert_tokens_to_ids(tok) for tok in unmask_tokens] | |
# After update, calling tokenizer of llama3 will | |
# auto add bos id for the tokens. ヽ(`⌒´)ノ | |
def safe_tokenizer_llama3(text): | |
input_ids = tokenizer(text).input_ids | |
if input_ids[0] == bos_token_id: | |
input_ids = input_ids[1:] | |
return input_ids | |
nl_tokens = tokenizer.convert_tokens_to_ids("\n\n") | |
# Apply prompt templates | |
input_ids, targets = [], [] | |
for i, source in enumerate(sources): | |
if roles[source[0]["from"]] != roles["human"]: | |
source = source[1:] | |
input_id, target = [], [] | |
# New version, use apply chat template | |
# Build system message for each sentence | |
input_id += tokenizer.apply_chat_template([{"role" : "system", "content" : system_message}]) | |
target += [IGNORE_INDEX] * len(input_id) | |
for conv in source: | |
try: | |
role = conv["role"] | |
content = conv["content"] | |
except: | |
role = conv["from"] | |
content = conv["value"] | |
role = roles.get(role, role) | |
conv = [{"role" : role, "content" : content}] | |
# First is bos token we don't need here | |
encode_id = tokenizer.apply_chat_template(conv)[1:] | |
input_id += encode_id | |
if role in ["user", "system"]: | |
target += [IGNORE_INDEX] * len(encode_id) | |
else: | |
target += encode_id | |
assert len(input_id) == len(target), f"{len(input_id)} != {len(target)}" | |
for idx, encode_id in enumerate(input_id): | |
if encode_id in unmask_tokens_idx: | |
target[idx] = encode_id | |
if encode_id == image_token_index: | |
input_id[idx] = IMAGE_TOKEN_INDEX | |
input_ids.append(input_id) | |
targets.append(target) | |
input_ids = torch.tensor(input_ids, dtype=torch.long) | |
targets = torch.tensor(targets, dtype=torch.long) | |
return dict( | |
input_ids=input_ids, # tensor(bs x seq_len) | |
labels=targets, # tensor(bs x seq_len) | |
) | |
def preprocess_plain( | |
sources: Sequence[str], | |
tokenizer: transformers.PreTrainedTokenizer, | |
) -> Dict: | |
# add end signal and concatenate together | |
conversations = [] | |
for source in sources: | |
assert len(source) == 2 | |
# assert DEFAULT_IMAGE_TOKEN in source[0]['value'] or DEFAULT_IMAGE_TOKEN in source[1]['value'] | |
conversation = source[0]["value"] + source[1]["value"] + conversation_lib.default_conversation.sep | |
conversations.append(conversation) | |
# tokenize conversations | |
input_ids = [tokenizer_image_token(prompt, tokenizer, return_tensors="pt") for prompt in conversations] | |
targets = copy.deepcopy(input_ids) | |
for target, source in zip(targets, sources): | |
tokenized_len = len(tokenizer_image_token(source[0]["value"], tokenizer)) | |
target[:tokenized_len] = IGNORE_INDEX | |
return dict(input_ids=input_ids, labels=targets) | |
def preprocess( | |
sources: Sequence[str], | |
tokenizer: transformers.PreTrainedTokenizer, | |
has_image: bool = False, | |
) -> Dict: | |
""" | |
Given a list of sources, each is a conversation list. This transform: | |
1. Add signal '### ' at the beginning each sentence, with end signal '\n'; | |
2. Concatenate conversations together; | |
3. Tokenize the concatenated conversation; | |
4. Make a deepcopy as the target. Mask human words with IGNORE_INDEX. | |
""" | |
if conversation_lib.default_conversation.sep_style == conversation_lib.SeparatorStyle.PLAIN: | |
return preprocess_plain(sources, tokenizer) | |
if conversation_lib.default_conversation.version == "llama3": | |
return preprocess_llama3(sources, tokenizer, has_image=has_image) | |
if conversation_lib.default_conversation.version == "qwen": | |
return preprocess_qwen(sources, tokenizer, has_image=has_image) | |
# add end signal and concatenate together | |
conversations = [] | |
for source in sources: | |
header = f"{conversation_lib.default_conversation.system}\n\n" | |
conversation = _add_speaker_and_signal(header, source) | |
conversations.append(conversation) | |
# tokenize conversations | |
def get_tokenize_len(prompts): | |
return [len(tokenizer_image_token(prompt, tokenizer)) for prompt in prompts] | |
if has_image: | |
input_ids = [tokenizer_image_token(prompt, tokenizer, return_tensors="pt") for prompt in conversations] | |
else: | |
conversations_tokenized = _tokenize_fn(conversations, tokenizer) | |
input_ids = conversations_tokenized["input_ids"] | |
targets = copy.deepcopy(input_ids) | |
for target, source in zip(targets, sources): | |
if has_image: | |
tokenized_lens = get_tokenize_len([header] + [s["value"] for s in source]) | |
else: | |
tokenized_lens = _tokenize_fn([header] + [s["value"] for s in source], tokenizer)["input_ids_lens"] | |
speakers = [sentence["from"] for sentence in source] | |
_mask_targets(target, tokenized_lens, speakers) | |
return dict(input_ids=input_ids, labels=targets) | |
class LazySupervisedMixDataset(Dataset): | |
"""Dataset for supervised fine-tuning.""" | |
def __init__( | |
self, | |
data_path: str, | |
tokenizer: transformers.PreTrainedTokenizer, | |
data_args: DataArguments, | |
): | |
super(LazySupervisedMixDataset, self).__init__() | |
self.data_args = data_args | |
list_data_dict = [] | |
###################################### text to image ####################################### | |
data_files = glob.glob(os.path.join(self.data_args.image_folder, "*.tar")) | |
## text to image | |
train_dataset = load_dataset("webdataset", data_files=data_files, split="train", num_proc=128) | |
train_dataset = train_dataset.rename_column("jpg", "image") | |
train_dataset = train_dataset.add_column('type', len(train_dataset) * ['T2I']) | |
train_dataset = train_dataset.add_column('image_path', len(train_dataset) * [None]) | |
train_dataset = train_dataset.remove_columns([col for col in train_dataset.column_names if not col in ( | |
["image", "txt", "type", "image_path"])]) | |
print(f"finish loading image {len(train_dataset)}") | |
list_data_dict.append(train_dataset) | |
if len(list_data_dict) > 1: | |
list_data_dict = concatenate_datasets(list_data_dict) | |
else: | |
list_data_dict = list_data_dict[0] | |
list_data_dict = list_data_dict.shuffle(seed=42) | |
rank0_print(f"Totoal number of training instance: {len(list_data_dict)}") | |
self.tokenizer = tokenizer | |
self.list_data_dict = list_data_dict | |
def __len__(self): | |
return len(self.list_data_dict) | |
def lengths(self): | |
length_list = [] | |
for sample in self.list_data_dict: | |
img_tokens = 128 if "image" in sample else 0 | |
length_list.append(sum(len(conv["value"].split()) for conv in sample["conversations"]) + img_tokens) | |
return length_list | |
def modality_lengths(self): | |
length_list = [] | |
for sample in self.list_data_dict: | |
cur_len = sum(len(conv["value"].split()) for conv in sample["conversations"]) | |
cur_len = cur_len if "image" in sample else -cur_len | |
length_list.append(cur_len) | |
return length_list | |
def __getitem__(self, i) -> Dict[str, torch.Tensor]: | |
while True: | |
sources = self.list_data_dict[i] | |
if sources["type"] == "T2I" or sources["type"] == "journeyDB_T2I": | |
sources["conversations"] = [ | |
{"from": "human", "value": f"Please generate image based on the following caption: {sources['txt']}"}, | |
{"from": "gpt", "value": "<image>"}, | |
] | |
elif sources["type"] == "I2I" or sources["type"] == "journeyDB_I2I": | |
sources["conversations"] = [ | |
{ | |
"from": "human", | |
"value": f"<image>\nPlease reconstruct the given image.", | |
}, | |
{"from": "gpt", "value": ""}, | |
] | |
else: | |
raise ValueError("Unknown source type. Please check the 'type' in 'sources'.") | |
if "image" in sources: | |
def img_process(images, processor, image_aspect_ratio): | |
if image_aspect_ratio == "pad": | |
def expand2square(pil_img, background_color): | |
width, height = pil_img.size | |
if width == height: | |
return pil_img | |
elif width > height: | |
result = Image.new(pil_img.mode, (width, width), background_color) | |
result.paste(pil_img, (0, (width - height) // 2)) | |
return result | |
else: | |
result = Image.new(pil_img.mode, (height, height), background_color) | |
result.paste(pil_img, ((height - width) // 2, 0)) | |
return result | |
images = [expand2square(img, tuple(int(x * 255) for x in processor.image_mean)) for img in images] | |
images = processor.preprocess(images, return_tensors="pt")["pixel_values"] | |
else: | |
images = processor.preprocess(images, return_tensors="pt")["pixel_values"] | |
return images | |
if sources["type"] == "T2I" or sources["type"] == "I2I": | |
image_files = self.list_data_dict[i]["image"] | |
else: | |
image_files = self.list_data_dict[i]["image_path"] | |
if not isinstance(image_files, list): | |
image_files = [image_files] | |
images = [] | |
def read_bin_as_bytesio(bin_file_path): | |
with open(bin_file_path, "rb") as f: | |
return io.BytesIO(f.read()) | |
for img in image_files: | |
try: | |
if sources["type"] == "T2I" or sources["type"] == "I2I": | |
img = img.convert("RGB") | |
elif sources["type"] == "journeyDB_T2I" or sources["type"] == "journeyDB_I2I": | |
if sources["type"] == "journeyDB_T2I" or sources["type"] == "journeyDB_I2I": | |
image_path = os.path.join('/fsx/sfr/data/jiuhai/hub/datasets--JourneyDB--JourneyDB/snapshots/e191aa61ca37e5e4418707ade4df5deb5c6d5d8f/data/train/imgs', img) | |
else: | |
raise ValueError("Unknown source type. Please check the 'type' in 'sources'.") | |
img = Image.open(image_path).convert("RGB") | |
images.append(img) | |
except Exception as e: | |
print(f"Error opening image {img}: {e}") | |
images = None | |
break # Skip to the next image if there's an error | |
if not images is None: | |
try: | |
temp = img_process( | |
images, | |
self.data_args.gen_image_processor, | |
self.data_args.image_aspect_ratio, | |
) | |
except Exception as e: | |
print(f"Error wrong number of channels: {e}") | |
images = None | |
# If no valid images were found, randomly pick another item | |
if images is None: | |
print(sources) | |
print(f"warning false image!!!!!!") | |
i = random.randint(0, len(self.list_data_dict) - 1) | |
continue | |
sources, inst_type = preprocess_multimodal(copy.deepcopy([sources["conversations"]]), self.data_args) | |
else: | |
sources = copy.deepcopy([sources["conversations"]]) | |
data_dict = preprocess(sources, self.tokenizer, has_image=("image" in self.list_data_dict[i])) | |
if isinstance(i, int): | |
data_dict = dict(input_ids=data_dict["input_ids"][0], labels=data_dict["labels"][0]) | |
# image exist in the data | |
if "image" in self.list_data_dict[i]: | |
if inst_type == "gen": | |
data_dict["gen_image"] = img_process( | |
images, | |
self.data_args.gen_image_processor, | |
self.data_args.image_aspect_ratio, | |
) | |
elif inst_type == "und": | |
resized_images = [transform_und_images(img) for img in images] | |
image_inputs = self.data_args.image_processor(resized_images, return_tensors="pt") | |
data_dict["und_image"] = image_inputs.pixel_values | |
data_dict["grid_thw"] = image_inputs.image_grid_thw | |
data_dict["gen_image"] = img_process( | |
resized_images, | |
self.data_args.gen_image_processor, | |
self.data_args.image_aspect_ratio, | |
) | |
elif self.data_args.is_multimodal: | |
crop_size = self.data_args.image_processor.crop_size | |
data_dict["image"] = torch.zeros(3, crop_size["height"], crop_size["width"]) | |
data_dict["ids"] = self.list_data_dict[i]["id"] if "id" in self.list_data_dict[i] else "unk" | |
return data_dict | |
class DataCollatorForSupervisedDataset(object): | |
"""Collate examples for supervised fine-tuning.""" | |
tokenizer: transformers.PreTrainedTokenizer | |
def __call__(self, instances: Sequence[Dict]) -> Dict[str, torch.Tensor]: | |
input_ids, labels, ids = tuple([instance[key] for instance in instances] for key in ("input_ids", "labels", "ids")) | |
multi_input_ids = [] | |
multi_labels = [] | |
i_s_pos = [] | |
for input_id, label in zip(input_ids, labels): | |
input_id = input_id[: self.tokenizer.model_max_length - 65] | |
label = label[: self.tokenizer.model_max_length - 65] | |
i_s_pos.append(input_id.shape[0]+1) | |
img_id = torch.full((65,), IMAGE_TOKEN_IDX, dtype=input_id.dtype, device=input_id.device) | |
img_id[0] = 151665 | |
input_id = torch.cat([input_id, img_id]) | |
img_label = torch.full((65,), IMAGE_TOKEN_IDX, dtype=label.dtype, device=label.device) | |
img_label[0] = 151665 | |
label = torch.cat([label, img_label]) | |
multi_input_ids.append(input_id) | |
multi_labels.append(label) | |
input_ids = multi_input_ids | |
labels = multi_labels | |
input_ids = torch.nn.utils.rnn.pad_sequence(input_ids, batch_first=True, padding_value=self.tokenizer.pad_token_id) | |
labels = torch.nn.utils.rnn.pad_sequence(labels, batch_first=True, padding_value=IGNORE_INDEX) | |
if input_ids.shape[1] > self.tokenizer.model_max_length: | |
print(f"Warning input with length {input_ids.shape[1]} is longer than max length {self.tokenizer.model_max_length}") | |
input_ids = input_ids[:, : self.tokenizer.model_max_length] | |
labels = labels[:, : self.tokenizer.model_max_length] | |
batch = dict( | |
input_ids=input_ids, | |
labels=labels, | |
attention_mask=input_ids.ne(self.tokenizer.pad_token_id), | |
) | |
batch_gen_images = [] | |
batch_und_images = [] | |
batch_grid_thw = [] | |
for instance in instances: | |
if "gen_image" in instance: | |
batch_gen_images.append(instance["gen_image"]) | |
if len(batch_gen_images) > 0: | |
if all(x is not None and y.shape == batch_gen_images[0][0].shape for x in batch_gen_images for y in x): | |
batch["gen_image"] = torch.cat([images for images in batch_gen_images], dim=0) | |
else: | |
batch["gen_image"] = batch_gen_images | |
else: | |
batch["gen_image"] = None | |
for instance in instances: | |
if "und_image" in instance: | |
batch_und_images.append(instance["und_image"].unsqueeze(0)) ## 1*1024*1176 | |
batch_grid_thw.append(instance["grid_thw"]) ## 1*3 | |
# print(f"batch_und_images {batch_und_images}") | |
if len(batch_und_images) > 0: | |
batch["und_image"] = torch.cat([images for images in batch_und_images], dim=0) | |
batch["grid_thw"] = torch.cat([images for images in batch_grid_thw], dim=0) | |
else: | |
batch["und_image"] = None | |
batch["grid_thw"] = None | |
batch["ids"] = ids | |
batch["i_s_pos"] = i_s_pos | |
return batch | |
def make_supervised_data_module(tokenizer: transformers.PreTrainedTokenizer, data_args) -> Dict: | |
if data_args.data_type == "mix": | |
train_dataset = LazySupervisedMixDataset(tokenizer=tokenizer, data_path=data_args.data_path, data_args=data_args) | |
else: | |
raise ValueError("Unknown data type. Please check the Dataloader type.") | |
data_collator = DataCollatorForSupervisedDataset(tokenizer=tokenizer) | |
return dict(train_dataset=train_dataset, eval_dataset=None, data_collator=data_collator) | |
def unlock_vit(training_args, model_args, vision_tower): | |
for n, p in vision_tower.named_parameters(): | |
p.requires_grad = True | |
def train(attn_implementation=None): | |
global local_rank | |
parser = transformers.HfArgumentParser((ModelArguments, DataArguments, TrainingArguments)) | |
model_args, data_args, training_args = parser.parse_args_into_dataclasses() | |
print(model_args, data_args, training_args) | |
local_rank = training_args.local_rank | |
compute_dtype = torch.float16 if training_args.fp16 else (torch.bfloat16 if training_args.bf16 else torch.float32) | |
bnb_model_from_pretrained_args = {} | |
if training_args.bits in [4, 8]: | |
from transformers import BitsAndBytesConfig | |
bnb_model_from_pretrained_args.update( | |
dict( | |
device_map={"": training_args.device}, | |
load_in_4bit=training_args.bits == 4, | |
load_in_8bit=training_args.bits == 8, | |
quantization_config=BitsAndBytesConfig( | |
load_in_4bit=training_args.bits == 4, | |
load_in_8bit=training_args.bits == 8, | |
llm_int8_skip_modules=["mm_projector"], | |
llm_int8_threshold=6.0, | |
llm_int8_has_fp16_weight=False, | |
bnb_4bit_compute_dtype=compute_dtype, | |
bnb_4bit_use_double_quant=training_args.double_quant, | |
bnb_4bit_quant_type=training_args.quant_type, # {'fp4', 'nf4'} | |
), | |
) | |
) | |
if model_args.vision_tower is not None: | |
model = blip3oLlamaForCausalLM.from_pretrained( | |
model_args.model_name_or_path, | |
cache_dir=training_args.cache_dir, | |
attn_implementation=attn_implementation, | |
torch_dtype=(torch.bfloat16 if training_args.bf16 else None), | |
**bnb_model_from_pretrained_args, | |
) | |
else: | |
if "Qwen" in model_args.model_name_or_path or "qwen" in model_args.model_name_or_path : | |
model = blip3oQwenForCausalLM.from_pretrained( | |
model_args.model_name_or_path, | |
cache_dir=training_args.cache_dir, | |
attn_implementation=attn_implementation, | |
torch_dtype=(torch.bfloat16 if training_args.bf16 else None), | |
**bnb_model_from_pretrained_args, | |
) | |
else: | |
model = transformers.LlamaForCausalLM.from_pretrained( | |
model_args.model_name_or_path, | |
cache_dir=training_args.cache_dir, | |
attn_implementation=attn_implementation, | |
torch_dtype=(torch.bfloat16 if training_args.bf16 else None), | |
**bnb_model_from_pretrained_args, | |
) | |
model.config.use_cache = False | |
if model_args.freeze_backbone: | |
for (n, p) in model.get_model().named_parameters(): | |
p.requires_grad = False | |
for (n, p) in model.visual.named_parameters(): | |
p.requires_grad = False | |
for (n, p) in model.lm_head.named_parameters(): | |
p.requires_grad = False | |
if training_args.gradient_checkpointing: | |
if hasattr(model, "enable_input_require_grads"): | |
model.enable_input_require_grads() | |
else: | |
def make_inputs_require_grad(module, input, output): | |
output.requires_grad_(True) | |
model.get_input_embeddings().register_forward_hook(make_inputs_require_grad) | |
if "Qwen" in model_args.model_name_or_path or "qwen" in model_args.model_name_or_path: | |
tokenizer = AutoProcessor.from_pretrained(model_args.model_name_or_path).tokenizer | |
tokenizer.model_max_length = training_args.model_max_length | |
else: | |
tokenizer = transformers.AutoTokenizer.from_pretrained( | |
model_args.model_name_or_path, | |
cache_dir=training_args.cache_dir, | |
model_max_length=training_args.model_max_length, | |
padding_side="right", | |
use_fast=False, | |
) | |
# tokenizer.pad_token = tokenizer.unk_token | |
if tokenizer.pad_token is None: | |
smart_tokenizer_and_embedding_resize( | |
special_tokens_dict=dict( | |
pad_token="<pad>", | |
additional_special_tokens=["[IMG]", "[/IMG]", "<image>"], | |
), | |
tokenizer=tokenizer, | |
model=model, | |
) | |
elif not "<image>" in tokenizer.get_added_vocab(): | |
smart_tokenizer_and_embedding_resize( | |
special_tokens_dict=dict(additional_special_tokens=["[IMG]", "[/IMG]", "<image>"]), | |
tokenizer=tokenizer, | |
model=model, | |
) | |
if model_args.version in conversation_lib.conv_templates: | |
conversation_lib.default_conversation = conversation_lib.conv_templates[model_args.version] | |
else: | |
conversation_lib.default_conversation = conversation_lib.conv_templates["llama3"] | |
rank0_print(f"Using conversation format: {conversation_lib.default_conversation.version}") | |
# if model_args.vision_tower is not None: | |
model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) | |
## generation vision tower | |
gen_vision_tower = model.get_gen_vision_tower() | |
gen_vision_tower.to( | |
dtype=torch.bfloat16 if training_args.bf16 else torch.float16, | |
device=training_args.device, | |
) | |
gen_vision_tower.requires_grad_(False) | |
data_args.gen_image_processor = gen_vision_tower.image_processor | |
data_args.image_processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct").image_processor | |
data_args.is_multimodal = True | |
data_args.n_query = model_args.n_query | |
data_args.n_und_query = model_args.n_und_query | |
model.config.image_aspect_ratio = data_args.image_aspect_ratio | |
model.config.tokenizer_padding_side = tokenizer.padding_side | |
model.config.tokenizer_model_max_length = tokenizer.model_max_length | |
model.config.tune_mm_mlp_adapter = training_args.tune_mm_mlp_adapter = model_args.tune_mm_mlp_adapter | |
model.config.freeze_mm_mlp_adapter = training_args.freeze_mm_mlp_adapter | |
# Calculate total parameters and trainable parameters | |
total_params = sum(p.numel() for p in model.get_model().parameters()) | |
trainable_params = sum(p.numel() for p in model.get_model().parameters() if p.requires_grad) | |
print(f"Total parameters: {total_params}") | |
print(f"Trainable parameters: {trainable_params}") | |
model.config.mm_use_im_start_end = data_args.mm_use_im_start_end = model_args.mm_use_im_start_end | |
model.config.mm_projector_lr = training_args.mm_projector_lr | |
training_args.use_im_start_end = model_args.mm_use_im_start_end | |
model.config.mm_use_im_patch_token = model_args.mm_use_im_patch_token | |
model.initialize_vision_tokenizer(model_args, tokenizer=tokenizer) | |
model.config.pad_token_id = tokenizer.pad_token_id | |
data_module = make_supervised_data_module(tokenizer=tokenizer, data_args=data_args) | |
trainer = blip3oTrainer( | |
model=model, | |
tokenizer=tokenizer, | |
args=training_args, | |
**data_module, | |
) | |
from tabulate import tabulate | |
if trainer.is_world_process_zero(): | |
stat = [] | |
for i, (n, p) in enumerate(trainer.model.named_parameters()): | |
stat.append([i, n, p.shape, p.requires_grad]) | |
print(tabulate(stat, headers=["idx", "name", "shape", "trainable"])) | |
if list(pathlib.Path(training_args.output_dir).glob("checkpoint-*")): | |
trainer.train(resume_from_checkpoint=True) | |
else: | |
trainer.train() | |
trainer.save_state() | |
model.config.use_cache = True | |
safe_save_model_for_hf_trainer( | |
trainer=trainer, | |
output_dir=training_args.output_dir, | |
vision_tower=model_args.vision_tower, | |
) | |
if __name__ == "__main__": | |
train() | |