Spaces:
Running
on
Zero
Running
on
Zero
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,214 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
import random
|
4 |
+
import spaces
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
from PIL import Image
|
8 |
+
import gradio as gr
|
9 |
+
from diffusers import DiffusionPipeline
|
10 |
+
from blip3o.conversation import conv_templates
|
11 |
+
from blip3o.model.builder import load_pretrained_model
|
12 |
+
from blip3o.utils import disable_torch_init
|
13 |
+
from blip3o.mm_utils import get_model_name_from_path
|
14 |
+
from qwen_vl_utils import process_vision_info
|
15 |
+
from huggingface_hub import snapshot_download
|
16 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoProcessor
|
17 |
+
|
18 |
+
processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct")
|
19 |
+
|
20 |
+
# Constants
|
21 |
+
MAX_SEED = 10000
|
22 |
+
|
23 |
+
HUB_MODEL_ID = "BLIP3o/BLIP3o-Model"
|
24 |
+
model_snapshot_path = snapshot_download(repo_id=HUB_MODEL_ID)
|
25 |
+
diffusion_path = os.path.join(model_snapshot_path, "diffusion-decoder")
|
26 |
+
|
27 |
+
def set_global_seed(seed: int = 42):
|
28 |
+
random.seed(seed)
|
29 |
+
np.random.seed(seed)
|
30 |
+
torch.manual_seed(seed)
|
31 |
+
torch.cuda.manual_seed_all(seed)
|
32 |
+
|
33 |
+
def add_template(prompt_list: list[str]) -> str:
|
34 |
+
conv = conv_templates['qwen'].copy()
|
35 |
+
conv.append_message(conv.roles[0], prompt_list[0])
|
36 |
+
conv.append_message(conv.roles[1], None)
|
37 |
+
return conv.get_prompt()
|
38 |
+
|
39 |
+
def make_prompt(text: str) -> list[str]:
|
40 |
+
raw = f"Please generate image based on the following caption: {text}"
|
41 |
+
return [add_template([raw])]
|
42 |
+
|
43 |
+
def randomize_seed_fn(seed: int, randomize: bool) -> int:
|
44 |
+
return random.randint(0, MAX_SEED) if randomize else seed
|
45 |
+
|
46 |
+
def generate_image(prompt: str, seed: int, guidance_scale: float, randomize: bool) -> list[Image.Image]:
|
47 |
+
seed = randomize_seed_fn(seed, randomize)
|
48 |
+
set_global_seed(seed)
|
49 |
+
formatted = make_prompt(prompt)
|
50 |
+
images = []
|
51 |
+
for _ in range(4):
|
52 |
+
out = pipe(formatted, guidance_scale=guidance_scale)
|
53 |
+
images.append(out.image)
|
54 |
+
return images
|
55 |
+
|
56 |
+
@spaces.GPU
|
57 |
+
def process_image(prompt: str, img: Image.Image) -> str:
|
58 |
+
messages = [{
|
59 |
+
"role": "user",
|
60 |
+
"content": [
|
61 |
+
{"type": "image", "image": img},
|
62 |
+
{"type": "text", "text": prompt},
|
63 |
+
],
|
64 |
+
}]
|
65 |
+
text_prompt_for_qwen = processor.apply_chat_template(
|
66 |
+
messages, tokenize=False, add_generation_prompt=True
|
67 |
+
)
|
68 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
69 |
+
inputs = processor(
|
70 |
+
text=[text_prompt_for_qwen],
|
71 |
+
images=image_inputs,
|
72 |
+
videos=video_inputs,
|
73 |
+
padding=True,
|
74 |
+
return_tensors="pt",
|
75 |
+
).to('cuda:0')
|
76 |
+
generated_ids = multi_model.generate(**inputs, max_new_tokens=1024)
|
77 |
+
input_token_len = inputs.input_ids.shape[1]
|
78 |
+
generated_ids_trimmed = generated_ids[:, input_token_len:]
|
79 |
+
output_text = processor.batch_decode(
|
80 |
+
generated_ids_trimmed, skip_special_tokens=True,
|
81 |
+
clean_up_tokenization_spaces=False
|
82 |
+
)[0]
|
83 |
+
return output_text
|
84 |
+
|
85 |
+
# Initialize model + pipeline
|
86 |
+
disable_torch_init()
|
87 |
+
model_path = os.path.expanduser(sys.argv[1])
|
88 |
+
tokenizer, multi_model, _ = load_pretrained_model(
|
89 |
+
model_path, None, get_model_name_from_path(model_path)
|
90 |
+
)
|
91 |
+
pipe = DiffusionPipeline.from_pretrained(
|
92 |
+
diffusion_path,
|
93 |
+
custom_pipeline="pipeline_llava_gen",
|
94 |
+
torch_dtype=torch.bfloat16,
|
95 |
+
use_safetensors=True,
|
96 |
+
variant="bf16",
|
97 |
+
multimodal_encoder=multi_model,
|
98 |
+
tokenizer=tokenizer,
|
99 |
+
safety_checker=None
|
100 |
+
)
|
101 |
+
pipe.vae.to('cuda')
|
102 |
+
pipe.unet.to('cuda')
|
103 |
+
|
104 |
+
# Gradio UI
|
105 |
+
with gr.Blocks(title="BLIP3-o") as demo:
|
106 |
+
with gr.Row():
|
107 |
+
with gr.Column(scale=2):
|
108 |
+
image_input = gr.Image(label="Input Image (optional)", type="pil")
|
109 |
+
prompt_input = gr.Textbox(
|
110 |
+
label="Prompt",
|
111 |
+
placeholder="Describe the image you want...",
|
112 |
+
lines=1
|
113 |
+
)
|
114 |
+
seed_slider = gr.Slider(
|
115 |
+
label="Seed",
|
116 |
+
minimum=0, maximum=int(MAX_SEED),
|
117 |
+
step=1, value=42
|
118 |
+
)
|
119 |
+
randomize_checkbox = gr.Checkbox(
|
120 |
+
label="Randomize seed", value=False
|
121 |
+
)
|
122 |
+
guidance_slider = gr.Slider(
|
123 |
+
label="Guidance Scale",
|
124 |
+
minimum=1.0, maximum=30.0,
|
125 |
+
step=0.5, value=3.0
|
126 |
+
)
|
127 |
+
run_btn = gr.Button("Run")
|
128 |
+
clean_btn = gr.Button("Clean All")
|
129 |
+
|
130 |
+
|
131 |
+
text_only = [
|
132 |
+
[None, "A cute cat."],
|
133 |
+
[None, "A young woman with freckles wearing a straw hat, standing in a golden wheat field."],
|
134 |
+
[None, "A group of friends having a picnic in the park."]
|
135 |
+
]
|
136 |
+
|
137 |
+
image_plus_text = [
|
138 |
+
[f"animal-compare.png", "Are these two pictures showing the same kind of animal?"],
|
139 |
+
[f"funny_image.jpeg", "Why is this image funny?"],
|
140 |
+
]
|
141 |
+
|
142 |
+
all_examples = text_only + image_plus_text
|
143 |
+
|
144 |
+
gr.Examples(
|
145 |
+
examples=all_examples,
|
146 |
+
inputs=[image_input, prompt_input],
|
147 |
+
cache_examples=False,
|
148 |
+
label="Try a sample (image generation (text input) or image understanding (image + text))"
|
149 |
+
)
|
150 |
+
|
151 |
+
|
152 |
+
|
153 |
+
with gr.Column(scale=3):
|
154 |
+
output_gallery = gr.Gallery(label="Generated Images", columns=4)
|
155 |
+
output_text = gr.Textbox(label="Generated Text", visible=False)
|
156 |
+
|
157 |
+
def run_all(img, prompt, seed, guidance, randomize):
|
158 |
+
if img is not None:
|
159 |
+
txt = process_image(prompt, img)
|
160 |
+
return (
|
161 |
+
gr.update(value=[], visible=False),
|
162 |
+
gr.update(value=txt, visible=True)
|
163 |
+
)
|
164 |
+
else:
|
165 |
+
imgs = generate_image(prompt, seed, guidance, randomize)
|
166 |
+
return (
|
167 |
+
gr.update(value=imgs, visible=True),
|
168 |
+
gr.update(value="", visible=False)
|
169 |
+
)
|
170 |
+
|
171 |
+
def clean_all():
|
172 |
+
return (
|
173 |
+
gr.update(value=None),
|
174 |
+
gr.update(value=""),
|
175 |
+
gr.update(value=42),
|
176 |
+
gr.update(value=False),
|
177 |
+
gr.update(value=3.0),
|
178 |
+
gr.update(value=[], visible=False),
|
179 |
+
gr.update(value="", visible=False)
|
180 |
+
)
|
181 |
+
|
182 |
+
# Chain seed randomization → run_all when clicking “Run”
|
183 |
+
run_btn.click(
|
184 |
+
fn=randomize_seed_fn,
|
185 |
+
inputs=[seed_slider, randomize_checkbox],
|
186 |
+
outputs=seed_slider
|
187 |
+
).then(
|
188 |
+
fn=run_all,
|
189 |
+
inputs=[image_input, prompt_input, seed_slider, guidance_slider, randomize_checkbox],
|
190 |
+
outputs=[output_gallery, output_text]
|
191 |
+
)
|
192 |
+
|
193 |
+
# Bind Enter on the prompt textbox to the same chain
|
194 |
+
prompt_input.submit(
|
195 |
+
fn=randomize_seed_fn,
|
196 |
+
inputs=[seed_slider, randomize_checkbox],
|
197 |
+
outputs=seed_slider
|
198 |
+
).then(
|
199 |
+
fn=run_all,
|
200 |
+
inputs=[image_input, prompt_input, seed_slider, guidance_slider, randomize_checkbox],
|
201 |
+
outputs=[output_gallery, output_text]
|
202 |
+
)
|
203 |
+
|
204 |
+
# Clean all inputs/outputs
|
205 |
+
clean_btn.click(
|
206 |
+
fn=clean_all,
|
207 |
+
inputs=[],
|
208 |
+
outputs=[image_input, prompt_input, seed_slider,
|
209 |
+
randomize_checkbox, guidance_slider,
|
210 |
+
output_gallery, output_text]
|
211 |
+
)
|
212 |
+
|
213 |
+
if __name__ == "__main__":
|
214 |
+
demo.launch(share=True)
|