Spaces:
Running
on
Zero
Running
on
Zero
Update blip3o/model/language_model/blip3o_qwen.py
Browse files
blip3o/model/language_model/blip3o_qwen.py
CHANGED
@@ -53,167 +53,167 @@ class blip3oQwenForCausalLM(Qwen2_5_VLForConditionalGeneration, blip3oMetaForCau
|
|
53 |
return self.model
|
54 |
|
55 |
|
56 |
-
def forward(
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
) -> Union[Tuple, CausalLMOutputWithPast]:
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
|
176 |
|
177 |
-
@torch.no_grad()
|
178 |
-
def generate(
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
) -> Union[GenerateOutput, torch.LongTensor]:
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
|
218 |
@torch.no_grad()
|
219 |
def generate_image(
|
|
|
53 |
return self.model
|
54 |
|
55 |
|
56 |
+
# def forward(
|
57 |
+
# self,
|
58 |
+
# input_ids: torch.LongTensor = None,
|
59 |
+
# attention_mask: Optional[torch.Tensor] = None,
|
60 |
+
# position_ids: Optional[torch.LongTensor] = None,
|
61 |
+
# past_key_values: Optional[List[torch.FloatTensor]] = None,
|
62 |
+
# inputs_embeds: Optional[torch.FloatTensor] = None,
|
63 |
+
# labels: Optional[torch.LongTensor] = None,
|
64 |
+
# ids: Optional[list] = None,
|
65 |
+
# i_s_pos: Optional[list] = None,
|
66 |
+
# use_cache: Optional[bool] = None,
|
67 |
+
# output_attentions: Optional[bool] = None,
|
68 |
+
# output_hidden_states: Optional[bool] = None,
|
69 |
+
# gen_image: Optional[torch.FloatTensor] = None,
|
70 |
+
# und_image: Optional[torch.FloatTensor] = None,
|
71 |
+
# grid_thw: Optional[torch.FloatTensor] = None,
|
72 |
+
# image_sizes: Optional[List[List[int]]] = None,
|
73 |
+
# return_dict: Optional[bool] = None,
|
74 |
+
# cache_position: Optional[torch.LongTensor] = None
|
75 |
+
# ) -> Union[Tuple, CausalLMOutputWithPast]:
|
76 |
+
|
77 |
+
# output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
78 |
+
# output_hidden_states = (
|
79 |
+
# output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
80 |
+
# )
|
81 |
+
# return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
82 |
|
83 |
+
# if inputs_embeds is None:
|
84 |
+
# (
|
85 |
+
# input_ids,
|
86 |
+
# position_ids,
|
87 |
+
# attention_mask,
|
88 |
+
# past_key_values,
|
89 |
+
# inputs_embeds,
|
90 |
+
# labels,
|
91 |
+
# latents
|
92 |
+
# ) = self.prepare_inputs_labels_for_multimodal(
|
93 |
+
# input_ids,
|
94 |
+
# position_ids,
|
95 |
+
# attention_mask,
|
96 |
+
# past_key_values,
|
97 |
+
# labels,
|
98 |
+
# gen_image,
|
99 |
+
# und_image,
|
100 |
+
# grid_thw,
|
101 |
+
# i_s_pos,
|
102 |
+
# image_sizes
|
103 |
+
# )
|
104 |
+
|
105 |
+
# outputs = self.model(
|
106 |
+
# input_ids=input_ids,
|
107 |
+
# attention_mask=attention_mask,
|
108 |
+
# position_ids=position_ids,
|
109 |
+
# past_key_values=past_key_values,
|
110 |
+
# inputs_embeds=inputs_embeds,
|
111 |
+
# use_cache=use_cache,
|
112 |
+
# output_attentions=output_attentions,
|
113 |
+
# output_hidden_states=output_hidden_states,
|
114 |
+
# return_dict=return_dict,
|
115 |
+
# )
|
116 |
|
117 |
+
# hidden_states = outputs[0]
|
118 |
+
# logits = self.lm_head(hidden_states)
|
119 |
+
# logits = logits.float()
|
120 |
|
121 |
+
# total_loss = None
|
122 |
+
# if labels is not None:
|
123 |
+
# # Shift so that tokens < n predict n
|
124 |
+
# shift_logits = logits[..., :-1, :].contiguous()
|
125 |
+
# shift_labels = labels[..., 1:].contiguous()
|
126 |
+
# # Flatten the tokens
|
127 |
+
# loss_fct = torch.nn.CrossEntropyLoss()
|
128 |
+
# shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
129 |
+
# shift_labels = shift_labels.view(-1)
|
130 |
+
# # Enable model parallelism
|
131 |
+
# shift_labels = shift_labels.to(shift_logits.device)
|
132 |
+
# loss = loss_fct(shift_logits, shift_labels)
|
133 |
+
|
134 |
+
|
135 |
+
# # compute image loss
|
136 |
+
# # target_img_embeds = torch.clone(inputs_embeds.detach())[:,1:,:] # get target image emb
|
137 |
+
# img_loss_funct = torch.nn.MSELoss()
|
138 |
+
# # img_hidden_states = self.get_model().down_projector(hidden_states[:,-self.get_n_query():,:])
|
139 |
+
# img_hidden_states = []
|
140 |
|
141 |
+
# for b in range(hidden_states.shape[0]):
|
142 |
+
# img_hidden_states.append(hidden_states[b,i_s_pos[b]:i_s_pos[b]+64,:])
|
143 |
+
# img_hidden_states = torch.stack(img_hidden_states,dim=0)
|
144 |
+
# img_hidden_states = self.get_model().down_projector(img_hidden_states)
|
145 |
+
# # img_loss = 0.0
|
146 |
+
# if latents is None:
|
147 |
+
# img_loss = img_loss_funct(img_hidden_states, torch.clone(img_hidden_states.detach()))
|
148 |
+
# else:
|
149 |
+
# bsz = latents.shape[0]
|
150 |
+
# # device = latents.device
|
151 |
+
# dtype = latents.dtype
|
152 |
+
# noise = torch.randn_like(latents, device=latents.device)
|
153 |
+
# u = torch.rand(size=(bsz,), device="cpu")
|
154 |
+
# indices = (u * self.get_model().noise_scheduler.config.num_train_timesteps).long()
|
155 |
+
# timesteps = self.get_model().noise_scheduler.timesteps[indices].to(device=latents.device)
|
156 |
+
# sigmas = self.get_sigmas(timesteps, latents.device, n_dim=latents.ndim, dtype=dtype)
|
157 |
+
# noisy_latents = (1.0 - sigmas) * latents + sigmas * noise
|
158 |
+
# noise_pred = self.get_model().dit(
|
159 |
+
# x=noisy_latents,
|
160 |
+
# timestep=timesteps,
|
161 |
+
# z_latents=self.mask_drop(img_hidden_states),
|
162 |
+
# )
|
163 |
+
# target = noise - latents
|
164 |
+
# img_loss = F.mse_loss(noise_pred.float(), target.float(), reduction="mean")
|
165 |
+
# print(f"img loss {img_loss}")
|
166 |
+
# total_loss = img_loss
|
167 |
+
|
168 |
+
# return CausalLMOutputWithPast(
|
169 |
+
# loss=total_loss,
|
170 |
+
# logits=logits,
|
171 |
+
# past_key_values=outputs.past_key_values,
|
172 |
+
# hidden_states=outputs.hidden_states,
|
173 |
+
# attentions=outputs.attentions,
|
174 |
+
# )
|
175 |
|
176 |
|
177 |
+
# @torch.no_grad()
|
178 |
+
# def generate(
|
179 |
+
# self,
|
180 |
+
# inputs: Optional[torch.Tensor] = None,
|
181 |
+
# images: Optional[torch.Tensor] = None,
|
182 |
+
# image_sizes: Optional[torch.Tensor] = None,
|
183 |
+
# **kwargs,
|
184 |
+
# ) -> Union[GenerateOutput, torch.LongTensor]:
|
185 |
+
# position_ids = kwargs.pop("position_ids", None)
|
186 |
+
# attention_mask = kwargs.pop("attention_mask", None)
|
187 |
+
# if "inputs_embeds" in kwargs:
|
188 |
+
# raise NotImplementedError("`inputs_embeds` is not supported")
|
189 |
+
|
190 |
+
# if images is not None:
|
191 |
+
# (
|
192 |
+
# inputs,
|
193 |
+
# position_ids,
|
194 |
+
# attention_mask,
|
195 |
+
# _,
|
196 |
+
# inputs_embeds,
|
197 |
+
# img_indicator,
|
198 |
+
# _
|
199 |
+
# ) = self.prepare_inputs_labels_for_understanding(
|
200 |
+
# inputs,
|
201 |
+
# position_ids,
|
202 |
+
# attention_mask,
|
203 |
+
# None,
|
204 |
+
# None,
|
205 |
+
# images,
|
206 |
+
# image_sizes=image_sizes
|
207 |
+
# )
|
208 |
+
# else:
|
209 |
+
# inputs_embeds = self.get_model().embed_tokens(inputs)
|
210 |
+
|
211 |
+
# return super().generate(
|
212 |
+
# position_ids=position_ids,
|
213 |
+
# attention_mask=attention_mask,
|
214 |
+
# inputs_embeds=inputs_embeds,
|
215 |
+
# **kwargs
|
216 |
+
# )
|
217 |
|
218 |
@torch.no_grad()
|
219 |
def generate_image(
|