import os import warnings import shutil from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig, BitsAndBytesConfig import torch from blip3o.model import * from blip3o.constants import DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN from blip3o.train.train import smart_tokenizer_and_embedding_resize def load_pretrained_model(model_path, model_base, model_name, load_8bit=False, load_4bit=False, device_map="auto", device="cuda", use_flash_attn=False, **kwargs): kwargs = {"device_map": device_map, **kwargs} if device != "cuda": kwargs['device_map'] = {"": device} if load_8bit: kwargs['load_in_8bit'] = True elif load_4bit: kwargs['load_in_4bit'] = True kwargs['quantization_config'] = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_compute_dtype=torch.float16, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type='nf4' ) else: kwargs['torch_dtype'] = torch.float16 if use_flash_attn: kwargs['attn_implementation'] = 'flash_attention_2' tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False) model = blip3oQwenForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, torch_dtype=torch.float16).to('cuda:0') image_processor = None mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False) mm_use_im_patch_token = getattr(model.config, "mm_use_im_patch_token", True) if mm_use_im_patch_token: tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True) if mm_use_im_start_end: tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True) model.resize_token_embeddings(len(tokenizer)) if hasattr(model.config, "max_sequence_length"): context_len = model.config.max_sequence_length else: context_len = 2048 return tokenizer, model, context_len