from typing import List, Optional, Tuple, Union from PIL import Image import torch import torch.nn as nn import torch.nn.functional as F from transformers import AutoConfig, AutoModelForCausalLM, \ LlamaConfig, LlamaModel, LlamaForCausalLM, AutoTokenizer from transformers.modeling_outputs import CausalLMOutputWithPast from transformers.generation.utils import GenerateOutput from ..blip3o_arch import blip3oMetaModel, blip3oMetaForCausalLM from blip3o.constants import IGNORE_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, IMAGE_TOKEN_IDX, DEFAULT_IM_START_TOKEN_IDX, DEFAULT_IM_END_TOKEN_IDX import pdb from diffusers.utils.torch_utils import randn_tensor from diffusers.pipelines.pipeline_utils import numpy_to_pil import numpy as np from diffusers.models import AutoencoderKL from diffusers.schedulers import FlowMatchEulerDiscreteScheduler class blip3oConfig(LlamaConfig): model_type = "blip3o_llama" class blip3oLlamaModel(blip3oMetaModel, LlamaModel): config_class = blip3oConfig def __init__(self, config: LlamaConfig): super(blip3oLlamaModel, self).__init__(config) class blip3oLlamaForCausalLM(LlamaForCausalLM, blip3oMetaForCausalLM): config_class = blip3oConfig def __init__(self, config): super(LlamaForCausalLM, self).__init__(config) self.model = blip3oLlamaModel(config) self.pretraining_tp = config.pretraining_tp self.vocab_size = config.vocab_size self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.dist = None # Initialize weights and apply final processing self.post_init() def get_model(self): return self.model def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, ids: Optional[list] = None, i_s_pos: Optional[list] = None, image_type: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, gen_image: Optional[torch.FloatTensor] = None, und_image: Optional[torch.FloatTensor] = None, image_sizes: Optional[List[List[int]]] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None ) -> Union[Tuple, CausalLMOutputWithPast]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if inputs_embeds is None: ( input_ids, position_ids, attention_mask, past_key_values, inputs_embeds, labels, latents ) = self.prepare_inputs_labels_for_multimodal( input_ids, position_ids, attention_mask, past_key_values, labels, gen_image, und_image, i_s_pos, image_sizes ) outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] logits = self.lm_head(hidden_states) logits = logits.float() total_loss = None if labels is not None: # Shift so that tokens < n predict n shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = torch.nn.CrossEntropyLoss() shift_logits = shift_logits.view(-1, self.config.vocab_size) shift_labels = shift_labels.view(-1) # Enable model parallelism shift_labels = shift_labels.to(shift_logits.device) loss = loss_fct(shift_logits, shift_labels) # compute image loss # target_img_embeds = torch.clone(inputs_embeds.detach())[:,1:,:] # get target image emb img_loss_funct = torch.nn.MSELoss() # img_hidden_states = self.get_model().down_projector(hidden_states[:,-self.get_n_query():,:]) img_hidden_states = [] for b in range(hidden_states.shape[0]): img_hidden_states.append(hidden_states[b,i_s_pos[b]:i_s_pos[b]+64,:]) img_hidden_states = torch.stack(img_hidden_states,dim=0) img_hidden_states = self.get_model().down_projector(img_hidden_states) # img_loss = 0.0 if latents is None: img_loss = img_loss_funct(img_hidden_states, torch.clone(img_hidden_states.detach())) else: bsz = latents.shape[0] # device = latents.device dtype = latents.dtype noise = torch.randn_like(latents, device=latents.device) u = torch.rand(size=(bsz,), device="cpu") indices = (u * self.get_model().noise_scheduler.config.num_train_timesteps).long() timesteps = self.get_model().noise_scheduler.timesteps[indices].to(device=latents.device) sigmas = self.get_sigmas(timesteps, latents.device, n_dim=latents.ndim, dtype=dtype) noisy_latents = (1.0 - sigmas) * latents + sigmas * noise noise_pred = self.get_model().dit( x=noisy_latents, timestep=timesteps, z_latents=self.mask_drop(img_hidden_states), ) target = noise - latents img_loss = F.mse_loss(noise_pred.float(), target.float(), reduction="mean") print(f"img loss {img_loss}, text loss {loss}") total_loss = img_loss return CausalLMOutputWithPast( loss=total_loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @torch.no_grad() def generate( self, inputs: Optional[torch.Tensor] = None, images: Optional[torch.Tensor] = None, image_sizes: Optional[torch.Tensor] = None, **kwargs, ) -> Union[GenerateOutput, torch.LongTensor]: position_ids = kwargs.pop("position_ids", None) attention_mask = kwargs.pop("attention_mask", None) if "inputs_embeds" in kwargs: raise NotImplementedError("`inputs_embeds` is not supported") if images is not None: ( inputs, position_ids, attention_mask, _, inputs_embeds, img_indicator, _ ) = self.prepare_inputs_labels_for_understanding( inputs, position_ids, attention_mask, None, None, images, image_sizes=image_sizes ) else: inputs_embeds = self.get_model().embed_tokens(inputs) return super().generate( position_ids=position_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, **kwargs ) @torch.no_grad() def generate_image( self, text: List[str], tokenizer: AutoTokenizer, image: Optional[torch.Tensor] = None, max_var: Optional[float] = None, # placeholder: str = DEFAULT_IMG_PLACEHOLDER, ): scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained("Alpha-VLLM/Lumina-Next-SFT-diffusers", subfolder="scheduler") vision_tower = self.get_vision_tower() mm_projector = self.get_mm_projector() N_QUERY = self.get_n_query() if image is not None: # image: [Batch, 3, 448, 448] prompt_image_embeds = vision_tower(batch_images) num_img, _, c = prompt_image_embeds.shape # [batch, 576, 1024] all_image_embeds = torch.clone(prompt_image_embeds).detach() prompt_image_embeds = prompt_image_embeds.contiguous().view(-1, c) prompt_image_embeds = mm_projector(prompt_image_embeds) inputs = tokenizer(text, padding="longest", return_tensors="pt") device = self.get_model().device attention_mask = inputs.attention_mask.to(device) input_ids = inputs.input_ids.to(device) # B x N input_ids = torch.cat([input_ids, torch.tensor([[198]]).to(device)], dim=1) # breakpoint() text_embeds = self.get_model().embed_tokens(input_ids) latent_queries = self.get_model().latent_queries.repeat(text_embeds.shape[0], 1, 1) text_embeds = torch.cat([text_embeds, latent_queries], dim=1) attention_mask = torch.cat([attention_mask, torch.ones_like(latent_queries[:, :, 0])], dim=1) outputs = self.model( inputs_embeds=text_embeds, # img_indicator=img_indicator, # concept_indicator=concept_indicator if self.use_concept_token else None, attention_mask=attention_mask, output_hidden_states=True, return_dict=True, ) hidden_states = outputs.hidden_states[-1][:,-N_QUERY:,:] img_hidden_states = self.get_model().down_projector(hidden_states) output_img = self.sample_images(img_hidden_states, scheduler) output_img = output_img.view(1, 1792, -1).permute(0,2,1).contiguous() return output_img def sample_images( self, img_hidden_states, scheduler, guidance_scale: float = 3.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, num_inference_steps: int = 30, num_images_per_prompt: int = 1, return_tensor=False, **kwargs, ): device = img_hidden_states.device dtype = img_hidden_states.dtype img_hidden_states_null = torch.zeros_like(img_hidden_states, device=device, dtype=dtype) img_hidden_states_input = torch.cat([img_hidden_states_null, img_hidden_states], 0) batch_size = img_hidden_states.shape[0] latent_size = self.get_model().dit.config.input_size latent_channels = self.get_model().dit.config.in_channels latents = randn_tensor( shape=(batch_size * num_images_per_prompt, latent_channels, latent_size, latent_size), generator=generator, device=device, dtype=dtype, ) # set step values sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) scheduler.set_timesteps(num_inference_steps, sigmas=sigmas) # Repeat z_latents and conditions for each image per prompt img_hidden_states_input = img_hidden_states_input.repeat_interleave(num_images_per_prompt, dim=0) for t in scheduler.timesteps: latent_model_input = latents.repeat(2, 1, 1, 1) if hasattr(scheduler, "scale_model_input"): latent_model_input = scheduler.scale_model_input(latent_model_input, t) # predict noise model_output noise_pred = self.get_model().dit( x=latent_model_input, timestep=t.unsqueeze(0).expand(latent_model_input.shape[0]).to(latent_model_input.device, torch.long), z_latents=img_hidden_states_input, ) # perform guidance noise_pred_uncond, noise_pred = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) # compute previous image: x_t -> x_t-1 latents = scheduler.step(noise_pred, t, latents).prev_sample # samples = self.decode_latents(latents, return_tensor=return_tensor) return latents def decode_latents(self, latents, normalize=True, return_tensor=False): if isinstance(self.get_model().vae, AutoencoderKL): latents = latents / self.get_model().vae.config.scaling_factor if self.get_model().vae.config.shift_factor is not None: latents = latents + self.get_model().vae.config.shift_factor latents = latents.to(dtype=torch.float32) samples = self.get_model().vae.decode(latents).sample else: samples = self.get_model().vae.decode(latents) if normalize: samples = (samples / 2 + 0.5).clamp(0, 1) else: samples = samples.clamp(-1, 1) if return_tensor: return samples samples = samples.cpu().permute(0, 2, 3, 1).float().numpy() samples = numpy_to_pil(samples) return samples def prepare_and_encode_inputs( self, inputs: List[str | Image.Image], tokenizer: AutoTokenizer, do_classifier_free_guidance: bool = False, ): # pdb.set_trace() device = self.get_model().device dtype = self.get_model().dtype has_image, has_text = False, False text_prompt, image_prompt = "", [] img_processor = self.get_vision_tower().image_processor negative_prompt = {} for x in inputs: if isinstance(x, str): has_text = True text_prompt += x else: has_image = True text_prompt += DEFAULT_IMAGE_TOKEN image_prompt.append(img_processor.preprocess(x, return_tensors='pt')['pixel_values']) # pdb.set_trace() if len(image_prompt) == 0: image_prompt = None else: image_prompt = torch.cat(image_prompt) image_prompt = image_prompt.type(dtype).to(device) if has_image and not has_text: prompt = self.encode_images(image_prompt) # pdb.set_trace() if do_classifier_free_guidance: key = "[NULL_IMAGE]" if key not in negative_prompt: negative_image = torch.zeros_like(image_prompt) negative_prompt[key] = self.encode_images(negative_image) prompt = torch.cat([prompt, negative_prompt[key]], dim=0) else: prompt = self.generate_image(text=[text_prompt], image=image_prompt, tokenizer=tokenizer) if do_classifier_free_guidance: key = "" if key not in negative_prompt: negative_prompt[key] = self.generate_image(text=[""], tokenizer=tokenizer) prompt = torch.cat([prompt, negative_prompt[key]], dim=0) gen_pooling = self.get_gen_pooling() n_query = self.get_n_query() num_img, _, c = prompt.shape if 'pool2d' in gen_pooling and has_text and not 'early' in gen_pooling: stride = int(gen_pooling.split('_')[1]) sqrt_n = int(n_query**0.5) prompt = prompt.permute(0, 2, 1).reshape(num_img, -1, sqrt_n, sqrt_n) prompt = F.avg_pool2d(prompt, kernel_size=(stride, stride), stride=stride) prompt = prompt.reshape(num_img, c, -1).permute(0,2,1) return prompt def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs): images = kwargs.pop("images", None) image_sizes = kwargs.pop("image_sizes", None) inputs = super().prepare_inputs_for_generation( input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs ) if images is not None: inputs['images'] = images if image_sizes is not None: inputs['image_sizes'] = image_sizes return inputs AutoConfig.register("blip3o_llama", blip3oConfig) AutoModelForCausalLM.register(blip3oConfig, blip3oLlamaForCausalLM)