Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	
		Marina Pliusnina
		
	commited on
		
		
					Commit 
							
							·
						
						c774338
	
1
								Parent(s):
							
							c8bd9ca
								
adding number of chunks and context
Browse files
    	
        app.py
    CHANGED
    
    | 
         @@ -37,13 +37,14 @@ def generate(prompt, model_parameters): 
     | 
|
| 37 | 
         
             
                    )
         
     | 
| 38 | 
         | 
| 39 | 
         | 
| 40 | 
         
            -
            def submit_input(input_, max_new_tokens, repetition_penalty, top_k, top_p, do_sample, num_beams, temperature):
         
     | 
| 41 | 
         
             
                if input_.strip() == "":
         
     | 
| 42 | 
         
             
                    gr.Warning("Not possible to inference an empty input")
         
     | 
| 43 | 
         
             
                    return None
         
     | 
| 44 | 
         | 
| 45 | 
         | 
| 46 | 
         
             
                model_parameters = {
         
     | 
| 
         | 
|
| 47 | 
         
             
                    "MAX_NEW_TOKENS": max_new_tokens,
         
     | 
| 48 | 
         
             
                    "REPETITION_PENALTY": repetition_penalty,
         
     | 
| 49 | 
         
             
                    "TOP_K": top_k,
         
     | 
| 
         @@ -109,6 +110,13 @@ def gradio_app(): 
     | 
|
| 109 | 
         | 
| 110 | 
         
             
                            with gr.Row(variant="panel"):
         
     | 
| 111 | 
         
             
                                with gr.Accordion("Model parameters", open=False, visible=SHOW_MODEL_PARAMETERS_IN_UI):
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 112 | 
         
             
                                    max_new_tokens = Slider(
         
     | 
| 113 | 
         
             
                                        minimum=50,
         
     | 
| 114 | 
         
             
                                        maximum=1000,
         
     | 
| 
         @@ -154,7 +162,7 @@ def gradio_app(): 
     | 
|
| 154 | 
         
             
                                        label="Temperature"
         
     | 
| 155 | 
         
             
                                    )
         
     | 
| 156 | 
         | 
| 157 | 
         
            -
                                    parameters_compontents = [max_new_tokens, repetition_penalty, top_k, top_p, do_sample, num_beams, temperature]
         
     | 
| 158 | 
         | 
| 159 | 
         
             
                        with gr.Column(variant="panel"):
         
     | 
| 160 | 
         
             
                            output = Textbox(
         
     | 
| 
         | 
|
| 37 | 
         
             
                    )
         
     | 
| 38 | 
         | 
| 39 | 
         | 
| 40 | 
         
            +
            def submit_input(input_, num_chunks, max_new_tokens, repetition_penalty, top_k, top_p, do_sample, num_beams, temperature):
         
     | 
| 41 | 
         
             
                if input_.strip() == "":
         
     | 
| 42 | 
         
             
                    gr.Warning("Not possible to inference an empty input")
         
     | 
| 43 | 
         
             
                    return None
         
     | 
| 44 | 
         | 
| 45 | 
         | 
| 46 | 
         
             
                model_parameters = {
         
     | 
| 47 | 
         
            +
                    "NUM_CHUNKS": num_chunks,
         
     | 
| 48 | 
         
             
                    "MAX_NEW_TOKENS": max_new_tokens,
         
     | 
| 49 | 
         
             
                    "REPETITION_PENALTY": repetition_penalty,
         
     | 
| 50 | 
         
             
                    "TOP_K": top_k,
         
     | 
| 
         | 
|
| 110 | 
         | 
| 111 | 
         
             
                            with gr.Row(variant="panel"):
         
     | 
| 112 | 
         
             
                                with gr.Accordion("Model parameters", open=False, visible=SHOW_MODEL_PARAMETERS_IN_UI):
         
     | 
| 113 | 
         
            +
                                    num_chunks = Slider(
         
     | 
| 114 | 
         
            +
                                        minimum=1,
         
     | 
| 115 | 
         
            +
                                        maximum=6,
         
     | 
| 116 | 
         
            +
                                        step=1,
         
     | 
| 117 | 
         
            +
                                        value=4,
         
     | 
| 118 | 
         
            +
                                        label="Number of chunks"
         
     | 
| 119 | 
         
            +
                                    )
         
     | 
| 120 | 
         
             
                                    max_new_tokens = Slider(
         
     | 
| 121 | 
         
             
                                        minimum=50,
         
     | 
| 122 | 
         
             
                                        maximum=1000,
         
     | 
| 
         | 
|
| 162 | 
         
             
                                        label="Temperature"
         
     | 
| 163 | 
         
             
                                    )
         
     | 
| 164 | 
         | 
| 165 | 
         
            +
                                    parameters_compontents = [num_chunks, max_new_tokens, repetition_penalty, top_k, top_p, do_sample, num_beams, temperature]
         
     | 
| 166 | 
         | 
| 167 | 
         
             
                        with gr.Column(variant="panel"):
         
     | 
| 168 | 
         
             
                            output = Textbox(
         
     | 
    	
        rag.py
    CHANGED
    
    | 
         @@ -24,19 +24,11 @@ class RAG: 
     | 
|
| 24 | 
         | 
| 25 | 
         
             
                    logging.info("RAG loaded!")
         
     | 
| 26 | 
         | 
| 27 | 
         
            -
                def get_context(self, instruction, number_of_contexts= 
     | 
| 28 | 
         
            -
             
     | 
| 29 | 
         
            -
                    context = ""
         
     | 
| 30 | 
         
            -
             
     | 
| 31 | 
         | 
| 32 | 
         
             
                    documentos = self.vectore_store.similarity_search_with_score(instruction, k=number_of_contexts)
         
     | 
| 33 | 
         | 
| 34 | 
         
            -
             
     | 
| 35 | 
         
            -
                    for doc in documentos:
         
     | 
| 36 | 
         
            -
             
     | 
| 37 | 
         
            -
                        context += doc[0].page_content
         
     | 
| 38 | 
         
            -
             
     | 
| 39 | 
         
            -
                    return context
         
     | 
| 40 | 
         | 
| 41 | 
         
             
                def predict(self, instruction, context, model_parameters):
         
     | 
| 42 | 
         | 
| 
         @@ -61,14 +53,30 @@ class RAG: 
     | 
|
| 61 | 
         
             
                    response = requests.post(self.model_name, headers=headers, json=payload)
         
     | 
| 62 | 
         | 
| 63 | 
         
             
                    return response.json()[0]["generated_text"].split("###")[-1][8:-1]
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 64 | 
         | 
| 65 | 
         
             
                def get_response(self, prompt: str, model_parameters: dict) -> str:
         
     | 
| 66 | 
         | 
| 67 | 
         
            -
                     
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 68 | 
         | 
| 69 | 
         
            -
                    response = self.predict(prompt,  
     | 
| 70 | 
         | 
| 71 | 
         
             
                    if not response:
         
     | 
| 72 | 
         
             
                        return self.NO_ANSWER_MESSAGE
         
     | 
| 73 | 
         | 
| 74 | 
         
            -
                    return response
         
     | 
| 
         | 
|
| 24 | 
         | 
| 25 | 
         
             
                    logging.info("RAG loaded!")
         
     | 
| 26 | 
         | 
| 27 | 
         
            +
                def get_context(self, instruction, number_of_contexts=4):
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 28 | 
         | 
| 29 | 
         
             
                    documentos = self.vectore_store.similarity_search_with_score(instruction, k=number_of_contexts)
         
     | 
| 30 | 
         | 
| 31 | 
         
            +
                    return documentos
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 32 | 
         | 
| 33 | 
         
             
                def predict(self, instruction, context, model_parameters):
         
     | 
| 34 | 
         | 
| 
         | 
|
| 53 | 
         
             
                    response = requests.post(self.model_name, headers=headers, json=payload)
         
     | 
| 54 | 
         | 
| 55 | 
         
             
                    return response.json()[0]["generated_text"].split("###")[-1][8:-1]
         
     | 
| 56 | 
         
            +
                
         
     | 
| 57 | 
         
            +
                def beautiful_context(self, docs):
         
     | 
| 58 | 
         
            +
             
     | 
| 59 | 
         
            +
                    text_context = ""
         
     | 
| 60 | 
         
            +
             
     | 
| 61 | 
         
            +
                    full_context = ""
         
     | 
| 62 | 
         
            +
             
     | 
| 63 | 
         
            +
                    for doc in docs:
         
     | 
| 64 | 
         
            +
                        text_context += doc[0].page_content
         
     | 
| 65 | 
         
            +
                        full_context += doc[0].page_content + "\n"
         
     | 
| 66 | 
         
            +
                        full_context += doc[0].metadata["Títol de la norma"] + "\n\n"
         
     | 
| 67 | 
         
            +
             
     | 
| 68 | 
         
            +
                    return text_context, full_context
         
     | 
| 69 | 
         | 
| 70 | 
         
             
                def get_response(self, prompt: str, model_parameters: dict) -> str:
         
     | 
| 71 | 
         | 
| 72 | 
         
            +
                    docs = self.get_context(prompt, model_parameters["NUM_CHUNKS"])
         
     | 
| 73 | 
         
            +
                    text_context, full_context = beautiful_context(docs)
         
     | 
| 74 | 
         
            +
             
     | 
| 75 | 
         
            +
                    del model_parameters["NUM_CHUNKS"]
         
     | 
| 76 | 
         | 
| 77 | 
         
            +
                    response = self.predict(prompt, text_context, model_parameters)
         
     | 
| 78 | 
         | 
| 79 | 
         
             
                    if not response:
         
     | 
| 80 | 
         
             
                        return self.NO_ANSWER_MESSAGE
         
     | 
| 81 | 
         | 
| 82 | 
         
            +
                    return response, full_context
         
     |