Spaces:
Running
on
Zero
Running
on
Zero
Update whisper_cs.py
Browse files- whisper_cs.py +38 -102
whisper_cs.py
CHANGED
@@ -4,17 +4,15 @@ import os
|
|
4 |
import torchaudio
|
5 |
import torch
|
6 |
import re
|
7 |
-
from transformers import pipeline, WhisperForConditionalGeneration, WhisperProcessor, GenerationConfig
|
8 |
-
from pyannote.audio import Pipeline as DiarizationPipeline
|
9 |
-
import whisperx
|
10 |
import whisper_timestamped as whisper_ts
|
11 |
from typing import Dict
|
|
|
12 |
|
13 |
device = 0 if torch.cuda.is_available() else "cpu"
|
14 |
torch_dtype = torch.float32
|
15 |
|
16 |
-
|
17 |
-
|
18 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
19 |
|
20 |
def clean_text(input_text):
|
@@ -42,19 +40,6 @@ def split_stereo_channels(audio_path):
|
|
42 |
channels[1].export(f"temp_mono_speaker2.wav", format="wav") # Left
|
43 |
|
44 |
|
45 |
-
def convert_to_mono(input_path):
|
46 |
-
audio = AudioSegment.from_file(input_path)
|
47 |
-
base, ext = os.path.splitext(input_path)
|
48 |
-
output_path = f"{base}_merged.wav"
|
49 |
-
print('output_path',output_path)
|
50 |
-
mono = audio.set_channels(1)
|
51 |
-
mono.export(output_path, format="wav")
|
52 |
-
return output_path
|
53 |
-
|
54 |
-
def save_temp_audio(waveform, sample_rate, path):
|
55 |
-
waveform = waveform.unsqueeze(0) if waveform.dim() == 1 else waveform
|
56 |
-
torchaudio.save(path, waveform, sample_rate)
|
57 |
-
|
58 |
def format_audio(audio_path):
|
59 |
input_audio, sample_rate = torchaudio.load(audio_path)
|
60 |
if input_audio.shape[0] == 2:
|
@@ -63,52 +48,6 @@ def format_audio(audio_path):
|
|
63 |
input_audio = resampler(input_audio)
|
64 |
print('resampled')
|
65 |
return input_audio.squeeze(), 16000
|
66 |
-
|
67 |
-
def assign_timestamps(asr_segments, audio_path):
|
68 |
-
waveform, sr = format_audio(audio_path)
|
69 |
-
total_duration = waveform.shape[-1] / sr
|
70 |
-
|
71 |
-
total_words = sum(len(seg["text"].split()) for seg in asr_segments)
|
72 |
-
if total_words == 0:
|
73 |
-
raise ValueError("Total number of words in ASR segments is zero. Cannot assign timestamps.")
|
74 |
-
|
75 |
-
avg_word_duration = total_duration / total_words
|
76 |
-
|
77 |
-
current_time = 0.0
|
78 |
-
for segment in asr_segments:
|
79 |
-
word_count = len(segment["text"].split())
|
80 |
-
segment_duration = word_count * avg_word_duration
|
81 |
-
segment["start"] = round(current_time, 3)
|
82 |
-
segment["end"] = round(current_time + segment_duration, 3)
|
83 |
-
current_time += segment_duration
|
84 |
-
|
85 |
-
return asr_segments
|
86 |
-
|
87 |
-
def hf_chunks_to_whisperx_segments(chunks):
|
88 |
-
return [
|
89 |
-
{
|
90 |
-
"text": chunk["text"],
|
91 |
-
"start": chunk["timestamp"][0],
|
92 |
-
"end": chunk["timestamp"][1],
|
93 |
-
}
|
94 |
-
for chunk in chunks
|
95 |
-
if chunk["timestamp"] and isinstance(chunk["timestamp"], (list, tuple))
|
96 |
-
]
|
97 |
-
|
98 |
-
def align_words_to_segments(words, segments, window=5.0):
|
99 |
-
aligned = []
|
100 |
-
seg_idx = 0
|
101 |
-
for word in words:
|
102 |
-
while seg_idx < len(segments) and segments[seg_idx]["end"] < word["start"] - window:
|
103 |
-
seg_idx += 1
|
104 |
-
for j in range(seg_idx, len(segments)):
|
105 |
-
seg = segments[j]
|
106 |
-
if seg["start"] > word["end"] + window:
|
107 |
-
break
|
108 |
-
if seg["start"] <= word["start"] < seg["end"]:
|
109 |
-
aligned.append((word, seg))
|
110 |
-
break
|
111 |
-
return aligned
|
112 |
|
113 |
def post_process_transcription(transcription, max_repeats=2):
|
114 |
tokens = re.findall(r'\b\w+\'?\w*\b[.,!?]?', transcription)
|
@@ -166,7 +105,7 @@ def cleanup_temp_files(*file_paths):
|
|
166 |
if path and os.path.exists(path):
|
167 |
os.remove(path)
|
168 |
|
169 |
-
|
170 |
|
171 |
def load_whisper_model(model_path: str):
|
172 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
@@ -241,33 +180,47 @@ def asr(audio_path):
|
|
241 |
asr_segments = assign_timestamps(asr_segments, audio_path)
|
242 |
return asr_segments
|
243 |
|
244 |
-
def align_asr_to_diarization(asr_segments, diarized_segments, audio_path):
|
245 |
-
waveform, sample_rate = format_audio(audio_path)
|
246 |
-
|
247 |
-
word_segments = whisperx.align(asr_segments, align_model, metadata, waveform, DEVICE)
|
248 |
-
words = word_segments['word_segments']
|
249 |
|
250 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
251 |
|
252 |
-
|
|
|
253 |
|
254 |
-
|
255 |
-
|
256 |
-
for word, segment in aligned_pairs:
|
257 |
-
key = (segment["start"], segment["end"], segment["speaker"])
|
258 |
-
if key not in segment_map:
|
259 |
-
segment_map[key] = []
|
260 |
-
segment_map[key].append(word["word"])
|
261 |
|
262 |
-
|
263 |
-
|
264 |
|
265 |
-
|
|
|
|
|
|
|
|
|
266 |
|
267 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
268 |
|
269 |
-
|
270 |
-
|
|
|
271 |
split_stereo_channels(audio_path)
|
272 |
|
273 |
left_channel_path = "temp_mono_speaker2.wav"
|
@@ -300,23 +253,6 @@ def generate(audio_path, use_v2):
|
|
300 |
output += f"[{speaker}]: {text}\n"
|
301 |
|
302 |
clean_output = output.strip()
|
303 |
-
|
304 |
-
else:
|
305 |
-
mono_audio_path = convert_to_mono(audio_path)
|
306 |
-
waveform, sr = format_audio(mono_audio_path)
|
307 |
-
tmp_full_path = "tmp_full.wav"
|
308 |
-
save_temp_audio(waveform, sr, tmp_full_path)
|
309 |
-
diarized_segments = diarization(tmp_full_path)
|
310 |
-
asr_segments = asr(tmp_full_path)
|
311 |
-
for segment in asr_segments:
|
312 |
-
segment["text"] = post_process_transcription(segment["text"])
|
313 |
-
aligned_text = align_asr_to_diarization(asr_segments, diarized_segments, tmp_full_path)
|
314 |
-
|
315 |
-
clean_output = ""
|
316 |
-
for line in aligned_text:
|
317 |
-
clean_output += f"{line}\n"
|
318 |
-
clean_output = post_merge_consecutive_segments_from_text(clean_output)
|
319 |
-
cleanup_temp_files(mono_audio_path,tmp_full_path)
|
320 |
|
321 |
cleanup_temp_files(
|
322 |
"temp_mono_speaker1.wav",
|
|
|
4 |
import torchaudio
|
5 |
import torch
|
6 |
import re
|
|
|
|
|
|
|
7 |
import whisper_timestamped as whisper_ts
|
8 |
from typing import Dict
|
9 |
+
from faster_whisper import WhisperModel
|
10 |
|
11 |
device = 0 if torch.cuda.is_available() else "cpu"
|
12 |
torch_dtype = torch.float32
|
13 |
|
14 |
+
MODEL_PATH_V2 = "langtech-veu/whisper-timestamped-cs"
|
15 |
+
MODEL_PATH_V2_FAST = "langtech-veu/faster-whisper-timestamped-cs"
|
16 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
17 |
|
18 |
def clean_text(input_text):
|
|
|
40 |
channels[1].export(f"temp_mono_speaker2.wav", format="wav") # Left
|
41 |
|
42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
def format_audio(audio_path):
|
44 |
input_audio, sample_rate = torchaudio.load(audio_path)
|
45 |
if input_audio.shape[0] == 2:
|
|
|
48 |
input_audio = resampler(input_audio)
|
49 |
print('resampled')
|
50 |
return input_audio.squeeze(), 16000
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
def post_process_transcription(transcription, max_repeats=2):
|
53 |
tokens = re.findall(r'\b\w+\'?\w*\b[.,!?]?', transcription)
|
|
|
105 |
if path and os.path.exists(path):
|
106 |
os.remove(path)
|
107 |
|
108 |
+
faster_model = WhisperModel(MODEL_PATH_V2_FAST, device=DEVICE, compute_type="int8")
|
109 |
|
110 |
def load_whisper_model(model_path: str):
|
111 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
180 |
asr_segments = assign_timestamps(asr_segments, audio_path)
|
181 |
return asr_segments
|
182 |
|
|
|
|
|
|
|
|
|
|
|
183 |
|
184 |
+
def generate(audio_path, use_v2_fast):
|
185 |
+
|
186 |
+
if use_v2_fast:
|
187 |
+
left_channel_path = "temp_mono_speaker2.wav"
|
188 |
+
right_channel_path = "temp_mono_speaker1.wav"
|
189 |
+
|
190 |
+
left_waveform, left_sr = format_audio(left_channel_path)
|
191 |
+
right_waveform, right_sr = format_audio(right_channel_path)
|
192 |
|
193 |
+
left_waveform = left_waveform.numpy().astype("float32")
|
194 |
+
right_waveform = right_waveform.numpy().astype("float32")
|
195 |
|
196 |
+
left_result, info = faster_model.transcribe(left_waveform, beam_size=5, task="transcribe")
|
197 |
+
right_result, info = faster_model.transcribe(right_waveform, beam_size=5, task="transcribe")
|
|
|
|
|
|
|
|
|
|
|
198 |
|
199 |
+
left_result = list(left_result)
|
200 |
+
right_result = list(right_result)
|
201 |
|
202 |
+
def get_faster_segments(segments, speaker_label):
|
203 |
+
return [
|
204 |
+
(seg.start, seg.end, speaker_label, post_process_transcription(seg.text.strip()))
|
205 |
+
for seg in segments if seg.text
|
206 |
+
]
|
207 |
|
208 |
+
left_segs = get_faster_segments(left_result, "Speaker 1")
|
209 |
+
right_segs = get_faster_segments(right_result, "Speaker 2")
|
210 |
+
|
211 |
+
merged_transcript = sorted(
|
212 |
+
left_segs + right_segs,
|
213 |
+
key=lambda x: float(x[0]) if x[0] is not None else float("inf")
|
214 |
+
)
|
215 |
+
|
216 |
+
clean_output = ""
|
217 |
+
for start, end, speaker, text in merged_transcript:
|
218 |
+
clean_output += f"[{speaker}]: {text}\n"
|
219 |
+
clean_output = post_merge_consecutive_segments_from_text(clean_output)
|
220 |
|
221 |
+
|
222 |
+
else:
|
223 |
+
model = load_whisper_model(MODEL_PATH_V2)
|
224 |
split_stereo_channels(audio_path)
|
225 |
|
226 |
left_channel_path = "temp_mono_speaker2.wav"
|
|
|
253 |
output += f"[{speaker}]: {text}\n"
|
254 |
|
255 |
clean_output = output.strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
256 |
|
257 |
cleanup_temp_files(
|
258 |
"temp_mono_speaker1.wav",
|