Spaces:
Running
Running
File size: 6,522 Bytes
8575cb5 a255fea 8575cb5 a255fea d240252 a255fea 3721bf6 a255fea 5f9dbfa a255fea 997c769 03a3aa7 997c769 313bd80 997c769 fa7fdf2 997c769 8575cb5 bd634a3 a255fea 5f9dbfa 8575cb5 d240252 3721bf6 611fcdd 3721bf6 d240252 a255fea 5f9dbfa a255fea 5f9dbfa bd634a3 a255fea 5f9dbfa d240252 5f9dbfa 6bb3324 5f9dbfa 8575cb5 5f9dbfa a255fea 5f9dbfa a255fea 5f9dbfa a255fea 5f9dbfa a255fea d240252 3721bf6 611fcdd a255fea 611fcdd 5f9dbfa 611fcdd 5f9dbfa 8575cb5 5f9dbfa 8575cb5 5f9dbfa 80b38e7 5f9dbfa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
import gradio as gr
from gradio import ChatMessage
import json
from openai import OpenAI
from tools import tools, oitools
from dotenv import load_dotenv
from datetime import datetime
import os
import re
load_dotenv(".env")
HF_TOKEN = os.environ.get("HF_TOKEN")
BASE_URL = os.environ.get("BASE_URL")
SYSTEM_PROMPT_TEMPLATE = """You are an AI assistant for a **hotel booking and information system**. Your job is to help users with:
- Hotel room bookings
- Modifying or canceling reservations
- Answering questions about accommodations, facilities, dining, and other hotel-related details
Today’s date is **{date}** — for your reference only. Do not use it in bookings unless the user provides or confirms it.
### Response Guidelines:
- **Be complete.** If key details (like check-in/check-out dates, number of guests, or room type) are missing, ask the user for them.
- **Be clear.** If you're unsure about anything, ask the user to clarify.
- **Match language.** Always reply in the same language the user used.
### Booking Rules:
- You can **only** handle **hotel room reservations**."""
# print(json.dumps(oitools, indent=2))
client = OpenAI(
base_url=f"{BASE_URL}/v1",
api_key=HF_TOKEN
)
def today_date():
return datetime.today().strftime('%A, %B %d, %Y, %I:%M %p')
def clean_json_string(json_str):
try:
data = json.loads(json_str)
if type(data) == list:
return json.dumps(data[0])
return json_str
except:
return re.sub(r'[ ,}\s]+$', '', json_str) + '}'
def completion(history, model, system_prompt: str, tools=None):
messages = [{"role": "system", "content": system_prompt.format(date=today_date())}]
for msg in history:
if isinstance(msg, dict):
msg = ChatMessage(**msg)
if msg.role == "assistant" and hasattr(msg, "metadata") and msg.metadata:
tools_calls = json.loads(msg.metadata.get("title", "[]"))
# for tool_calls in tools_calls:
# tool_calls["function"]["arguments"] = json.loads(tool_calls["function"]["arguments"])
messages.append({"role": "assistant", "tool_calls": tools_calls, "content": ""})
messages.append({"role": "tool", "content": msg.content})
else:
messages.append({"role": msg.role, "content": msg.content})
request_params = {
"model": model,
"messages": messages,
"stream": True,
"max_tokens": 1000,
"temperature": 0.01,
"frequency_penalty": 0.1,
"extra_body": {"repetition_penalty": 1.1},
}
if tools:
request_params.update({"tool_choice": "auto", "tools": tools})
return client.chat.completions.create(**request_params)
def llm_in_loop(history, system_prompt, recursive):
try:
models = client.models.list()
model = models.data[0].id if models.data else "gpt-3.5-turbo"
except Exception as err:
gr.Warning("The model is initializing. Please wait; this may take 5 to 10 minutes ⏳.", duration=20)
raise err
arguments = ""
name = ""
chat_completion = completion(history=history, tools=oitools, model=model, system_prompt=system_prompt)
appended = False
# if chat_completion.choices and chat_completion.choices[0].message.tool_calls:
# call = chat_completion.choices[0].message.tool_calls[0]
# if hasattr(call.function, "name") and call.function.name:
# name = call.function.name
# if hasattr(call.function, "arguments") and call.function.arguments:
# arguments += call.function.arguments
# elif chat_completion.choices[0].message.content:
# if not appended:
# history.append(ChatMessage(role="assistant", content=""))
# appended = True
# history[-1].content += chat_completion.choices[0].message.content
# yield history[recursive:]
for chunk in chat_completion:
if chunk.choices and chunk.choices[0].delta.tool_calls:
call = chunk.choices[0].delta.tool_calls[0]
if hasattr(call.function, "name") and call.function.name:
name = call.function.name
if hasattr(call.function, "arguments") and call.function.arguments:
arguments += call.function.arguments
elif chunk.choices[0].delta.content:
if not appended:
history.append(ChatMessage(role="assistant", content=""))
appended = True
history[-1].content += chunk.choices[0].delta.content
yield history[recursive:]
if name:
print("------------------------")
print(name, arguments)
arguments = clean_json_string(arguments) if arguments else "{}"
print(name, arguments)
print("====================")
arguments = json.loads(arguments)
result = f"💥 Error using tool {name}, tool doesn't exist" if name not in tools else str(tools[name].invoke(input=arguments))
result = json.dumps({name: result}, ensure_ascii=False)
# msg = ChatMessage(
# role="assistant",
# content="",
# metadata= {"title": f"🛠️ Using tool '{name}', arguments: {json.dumps(json_arguments, ensure_ascii=False)}"},
# options=[{"label":"tool_calls", "value": json.dumps([{"id": "call_FthC9qRpsL5kBpwwyw6c7j4k","function": {"arguments": arguments,"name": name},"type": "function"}])}]
# )
msg = ChatMessage(role="assistant", content=result, metadata={"title": json.dumps([{"id": "call_id", "function": {"arguments": json.dumps(arguments, ensure_ascii=False), "name": name}, "type": "function"}], ensure_ascii=False)})
if appended:
print("Text with function", history[-1].content)
msg.content = history[-1].content + "\n" + msg.content
history[-1] = msg
else:
history.append(msg)
yield history[recursive:]
yield from llm_in_loop(history, system_prompt, recursive - 1)
def respond(message, history, additional_inputs):
history.append(ChatMessage(role="user", content=message))
yield from llm_in_loop(history, additional_inputs, -1)
if __name__ == "__main__":
system_prompt = gr.Textbox(label="System prompt", value=SYSTEM_PROMPT_TEMPLATE, lines=3)
demo = gr.ChatInterface(respond, type="messages", additional_inputs=[system_prompt])
demo.launch()
|