File size: 6,599 Bytes
8575cb5
a255fea
8575cb5
a255fea
 
 
 
d240252
a255fea
3721bf6
 
a255fea
5f9dbfa
 
a255fea
fa7fdf2
03a3aa7
fa7fdf2
 
 
8e2ce4c
313bd80
fa7fdf2
8e2ce4c
 
 
fa7fdf2
 
8575cb5
bd634a3
 
a255fea
5f9dbfa
 
 
8575cb5
d240252
 
 
 
3721bf6
3aac3b1
3721bf6
d240252
 
a255fea
5f9dbfa
a255fea
5f9dbfa
 
 
 
bd634a3
a255fea
 
 
5f9dbfa
 
 
 
d240252
5f9dbfa
d240252
2e8758e
e223bec
5f9dbfa
 
 
 
 
8575cb5
5f9dbfa
a255fea
 
5f9dbfa
a255fea
 
 
5f9dbfa
a255fea
 
5f9dbfa
a255fea
d240252
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3721bf6
0057ac1
bd634a3
 
 
5f9dbfa
 
a255fea
5f9dbfa
 
 
 
 
 
 
 
76d9486
5f9dbfa
 
8575cb5
5f9dbfa
 
 
8575cb5
 
5f9dbfa
80b38e7
5f9dbfa
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import gradio as gr
from gradio import ChatMessage

import json
from openai import OpenAI
from tools import tools, oitools
from dotenv import load_dotenv
from datetime import datetime
import os
import re

load_dotenv(".env")
HF_TOKEN = os.environ.get("HF_TOKEN")  
BASE_URL = os.environ.get("BASE_URL")  

SYSTEM_PROMPT_TEMPLATE = """You are an AI assistant designed to assist users with a **hotel booking and information system**. Your primary role is to provide detailed and accurate information about the hotel, including available accommodations, facilities, dining options, and reservation services. You can assist with **hotel room bookings**, modify or cancel reservations, and answer general inquiries about the hotel.  

### **Response Guidelines:**  
- **Accuracy & Completeness:** Never provide information that is not explicitly available. If a required parameter (e.g., check-in date, check-out date, number of guests, or room type) is missing, ask the user to provide it before proceeding.  
- **No Hallucinations:** Do not assume details. If you are unsure about something, ask the user for clarification.  
- **Consistency:** Always respond in the same language as the user’s query. 

### **Booking Requirements:**  
You **can only process hotel room reservations**.
If a user requests a **restaurant, flight, or any other type of reservation**, immediately inform them that you **cannot process those reservations**.
Do **not** ask for further details about restaurant or flight bookings. Simply clarify that you **only handle hotel room reservations**.  

Today’s date is **{date}**."""


# print(json.dumps(oitools, indent=2))
client = OpenAI(
    base_url=f"{BASE_URL}/v1",  
    api_key=HF_TOKEN
)

def today_date():
    return datetime.today().strftime('%A, %B %d, %Y, %I:%M %p')


def clean_json_string(json_str):
    return re.sub(r'[ ,}\s]+$', '', json_str) + '}'

def completion(history, model, system_prompt: str, tools=None):
    messages = [{"role": "system", "content": system_prompt.format(date=today_date())}]
    for msg in history:
        if isinstance(msg, dict):  
            msg = ChatMessage(**msg)
        if msg.role == "assistant" and hasattr(msg, "metadata") and msg.metadata:  
            tools_calls = json.loads(msg.metadata.get("title", "[]")) 
            # for tool_calls in tools_calls:
            #     tool_calls["function"]["arguments"] = json.loads(tool_calls["function"]["arguments"])
            messages.append({"role": "assistant", "tool_calls": tools_calls, "content": ""})
            messages.append({"role": "tool", "content": msg.content})
        else:
            messages.append({"role": msg.role, "content": msg.content})
    
    request_params = {
        "model": model,
        "messages": messages,
        "stream": True,
        "max_tokens": 1000,
        "temperature": 0.15,
        "frequency_penalty": 1,
        "extra_body": {"repetition_penalty": 1.1},
    }
    if tools:
        request_params.update({"tool_choice": "auto", "tools": tools})
    
    return client.chat.completions.create(**request_params)  

def llm_in_loop(history, system_prompt, recursive):  
    try:   
        models = client.models.list()
        model = models.data[0].id if models.data else "gpt-3.5-turbo"  
    except Exception as err:
        gr.Warning("The model is initializing. Please wait; this may take 5 to 10 minutes ⏳.", duration=20)
        raise err
    
    arguments = ""
    name = ""
    chat_completion = completion(history=history, tools=oitools, model=model, system_prompt=system_prompt)  
    appended = False
    # if chat_completion.choices and chat_completion.choices[0].message.tool_calls:
    #     call = chat_completion.choices[0].message.tool_calls[0]
    #     if hasattr(call.function, "name") and call.function.name:
    #         name = call.function.name
    #     if hasattr(call.function, "arguments") and call.function.arguments:
    #         arguments += call.function.arguments
    # elif chat_completion.choices[0].message.content:
    #     if not appended:
    #         history.append(ChatMessage(role="assistant", content=""))
    #         appended = True
    #     history[-1].content += chat_completion.choices[0].message.content
    #     yield history[recursive:]
    for chunk in chat_completion:
        if chunk.choices and chunk.choices[0].delta.tool_calls:
            call = chunk.choices[0].delta.tool_calls[0]
            if hasattr(call.function, "name") and call.function.name:
                name = call.function.name
            if hasattr(call.function, "arguments") and call.function.arguments:
                arguments += call.function.arguments
        elif chunk.choices[0].delta.content:
            if not appended:
                history.append(ChatMessage(role="assistant", content=""))
                appended = True
            history[-1].content += chunk.choices[0].delta.content
            yield history[recursive:]
    
    print("Before:", name, arguments)
    arguments = clean_json_string(arguments) if arguments else "{}"
    print(name, arguments)
    arguments = json.loads(arguments)
    if appended:
        recursive -= 1
    if name:
        result = f"💥 Error using tool {name}, tool doesn't exist" if name not in tools else str(tools[name].invoke(input=arguments))
        result = json.dumps({name: result}, ensure_ascii=False)
        # msg = ChatMessage(
        #             role="assistant",
        #             content="",
        #             metadata= {"title": f"🛠️ Using tool '{name}', arguments: {json.dumps(json_arguments, ensure_ascii=False)}"},
        #             options=[{"label":"tool_calls", "value": json.dumps([{"id": "call_FthC9qRpsL5kBpwwyw6c7j4k","function": {"arguments": arguments,"name": name},"type": "function"}])}]
        #         )
        history.append(ChatMessage(role="assistant", content=result, metadata={"title": json.dumps([{"id": "call_id", "function": {"arguments": json.dumps(arguments, ensure_ascii=False), "name": name}, "type": "function"}], ensure_ascii=False)}))
        yield history[recursive:]
        yield from llm_in_loop(history, system_prompt, recursive - 1)

def respond(message, history, additional_inputs):  
    history.append(ChatMessage(role="user", content=message))
    yield from llm_in_loop(history, additional_inputs, -1)

if __name__ == "__main__":
    system_prompt = gr.Textbox(label="System prompt", value=SYSTEM_PROMPT_TEMPLATE, lines=3)  
    demo = gr.ChatInterface(respond, type="messages", additional_inputs=[system_prompt])
    demo.launch()