hotel_tools / app.py
ankush13r's picture
Update app.py
792256a verified
raw
history blame
7.11 kB
import gradio as gr
from gradio import ChatMessage
import json
from openai import OpenAI
from tools import tools, oitools
from dotenv import load_dotenv
from datetime import datetime
import os
import re
load_dotenv(".env")
HF_TOKEN = os.environ.get("HF_TOKEN")
BASE_URL = os.environ.get("BASE_URL")
SYSTEM_PROMPT_TEMPLATE = """You are an AI assistant for a **hotel booking and information system**. Your job is to help users with:
- Booking hotel rooms
- Modifying or canceling existing reservations
- Answering questions about accommodations, facilities, dining, and other hotel-related services
Today’s date is **{date}** — for your reference only. Do **not** use it for bookings unless the user explicitly provides or confirms the date.
---
### 🧭 Response Guidelines:
- **Be complete:** If essential details are missing — such as check-in/check-out dates, number of guests, or room type — always ask the user for that information before proceeding.
- **Be precise:** Do **not assume or invent** values. Only use details that the user has explicitly provided in the conversation.
- **Be clear:** If anything is ambiguous, ask the user to clarify.
- **Match language:** Always respond in the same language the user used.
---
### 📌 Booking Rules:
- You are **only allowed** to handle **hotel room reservations** (not flights, events, etc.).
- Do **not** call any booking tool unless **all required user inputs** are already present in the conversation.
- If any required input is missing, prompt the user to provide it first — do **not guess or autofill** missing values.
"""
# print(json.dumps(oitools, indent=2))
client = OpenAI(
base_url=f"{BASE_URL}/v1",
api_key=HF_TOKEN
)
def today_date():
return datetime.today().strftime('%A, %B %d, %Y, %I:%M %p')
def clean_json_string(json_str):
try:
data = json.loads(json_str)
if type(data) == list:
return json.dumps(data[0])
return json_str
except:
return re.sub(r'[ ,}\s]+$', '', json_str) + '}'
def completion(history, model, system_prompt: str, tools=None):
messages = [{"role": "system", "content": system_prompt.format(date=today_date())}]
for msg in history:
if isinstance(msg, dict):
msg = ChatMessage(**msg)
if msg.role == "assistant" and hasattr(msg, "metadata") and msg.metadata:
tools_calls = json.loads(msg.metadata.get("title", "[]"))
# for tool_calls in tools_calls:
# tool_calls["function"]["arguments"] = json.loads(tool_calls["function"]["arguments"])
messages.append({"role": "assistant", "tool_calls": tools_calls, "content": ""})
messages.append({"role": "tool", "content": msg.content})
else:
messages.append({"role": msg.role, "content": msg.content})
request_params = {
"model": model,
"messages": messages,
"stream": True,
"max_tokens": 1000,
"temperature": 0.05,
#"top_p": 0.3,
#"frequency_penalty": 0.3,
"extra_body": {"min_p": 0.2 , "top_k": 20}, #"min_p": 0.4 , "top_k": 20 #"repetition_penalty": 1.1,
}
if tools:
request_params.update({"tool_choice": "auto", "tools": tools})
return client.chat.completions.create(**request_params)
def llm_in_loop(history, system_prompt, recursive):
try:
models = client.models.list()
model = models.data[0].id if models.data else "gpt-3.5-turbo"
except Exception as err:
gr.Warning("The model is initializing. Please wait; this may take 5 to 10 minutes ⏳.", duration=20)
raise err
arguments = ""
name = ""
chat_completion = completion(history=history, tools=oitools, model=model, system_prompt=system_prompt)
appended = False
# if chat_completion.choices and chat_completion.choices[0].message.tool_calls:
# call = chat_completion.choices[0].message.tool_calls[0]
# if hasattr(call.function, "name") and call.function.name:
# name = call.function.name
# if hasattr(call.function, "arguments") and call.function.arguments:
# arguments += call.function.arguments
# elif chat_completion.choices[0].message.content:
# if not appended:
# history.append(ChatMessage(role="assistant", content=""))
# appended = True
# history[-1].content += chat_completion.choices[0].message.content
# yield history[recursive:]
for chunk in chat_completion:
if chunk.choices and chunk.choices[0].delta.tool_calls:
call = chunk.choices[0].delta.tool_calls[0]
if hasattr(call.function, "name") and call.function.name:
name = call.function.name
if hasattr(call.function, "arguments") and call.function.arguments:
arguments += call.function.arguments
elif chunk.choices[0].delta.content:
if not appended:
history.append(ChatMessage(role="assistant", content=""))
appended = True
history[-1].content += chunk.choices[0].delta.content
yield history[recursive:]
if name:
print("------------------------")
print(name, arguments)
arguments = clean_json_string(arguments) if arguments else "{}"
print(name, arguments)
print("====================")
arguments = json.loads(arguments)
result = f"💥 Error using tool {name}, tool doesn't exist" if name not in tools else str(tools[name].invoke(input=arguments))
result = json.dumps({name: result}, ensure_ascii=False)
# msg = ChatMessage(
# role="assistant",
# content="",
# metadata= {"title": f"🛠️ Using tool '{name}', arguments: {json.dumps(json_arguments, ensure_ascii=False)}"},
# options=[{"label":"tool_calls", "value": json.dumps([{"id": "call_FthC9qRpsL5kBpwwyw6c7j4k","function": {"arguments": arguments,"name": name},"type": "function"}])}]
# )
msg = ChatMessage(role="assistant", content=result, metadata={"title": json.dumps([{"id": "call_id", "function": {"arguments": json.dumps(arguments, ensure_ascii=False), "name": name}, "type": "function"}], ensure_ascii=False)})
if appended:
print("Text with function", history[-1].content)
msg.content = history[-1].content + "\n" + msg.content
history[-1] = msg
else:
history.append(msg)
yield history[recursive:]
yield from llm_in_loop(history, system_prompt, recursive - 1)
def respond(message, history, additional_inputs):
history.append(ChatMessage(role="user", content=message))
yield from llm_in_loop(history, additional_inputs, -1)
if __name__ == "__main__":
system_prompt = gr.Textbox(label="System prompt", value=SYSTEM_PROMPT_TEMPLATE, lines=3)
demo = gr.ChatInterface(respond, type="messages", additional_inputs=[system_prompt])
demo.launch()