Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -180,7 +180,7 @@ with gr.Blocks(fill_width=True) as demo:
|
|
180 |
with gr.Tab("Single Text Classification"):
|
181 |
gr.Markdown(
|
182 |
"""
|
183 |
-
#
|
184 |
In this section you test the relevance classifier with written texts.\n
|
185 |
Usage:\n
|
186 |
- Type a tweet-like text in the textbox.\n
|
@@ -213,7 +213,7 @@ with gr.Blocks(fill_width=True) as demo:
|
|
213 |
with gr.Tab("Event Type Classification"):
|
214 |
gr.Markdown(
|
215 |
"""
|
216 |
-
#
|
217 |
This is a demo created to explore floods and wildfire classification in social media posts.\n
|
218 |
Upload .tsv or .csv data file (must contain a text column with social media posts), next enter the name of the text column, choose classifier model, and click 'start prediction'.
|
219 |
""")
|
|
|
180 |
with gr.Tab("Single Text Classification"):
|
181 |
gr.Markdown(
|
182 |
"""
|
183 |
+
# Single Text Classifier Demo
|
184 |
In this section you test the relevance classifier with written texts.\n
|
185 |
Usage:\n
|
186 |
- Type a tweet-like text in the textbox.\n
|
|
|
213 |
with gr.Tab("Event Type Classification"):
|
214 |
gr.Markdown(
|
215 |
"""
|
216 |
+
# Relevance Classifier Demo
|
217 |
This is a demo created to explore floods and wildfire classification in social media posts.\n
|
218 |
Upload .tsv or .csv data file (must contain a text column with social media posts), next enter the name of the text column, choose classifier model, and click 'start prediction'.
|
219 |
""")
|