jayebaku commited on
Commit
8ce9236
·
verified ·
1 Parent(s): 9e790a8

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +14 -15
app.py CHANGED
@@ -45,22 +45,21 @@ def analyze_selected_texts(selections):
45
  with gr.Blocks() as demo:
46
  event_models = ["jayebaku/distilbert-base-multilingual-cased-crexdata-relevance-classifier"]
47
 
48
- gr.Markdown(
49
- """
50
- # T4.5 Relevance Classifier Demo
51
- This is a demo created to explore floods and wildfire classification in social media posts.
52
- Usage:
53
- - Upload .tsv data file (must contain a text column with social media posts).
54
- - Next, type the name of the text column.
55
- - Then, choose a BERT classifier model from the drop down.
56
- - Finally, click the 'start classification' buttton.
57
- Evaluation:
58
- - To evaluate the model's accuracy select the INCORRECT classifications using the checkboxes in front of each post.
59
- - Then, click on the 'Calculate Accuracy' button.
60
- - Then, click on the 'Download data as CSV' to get the classifications and evaluation data as a .csv file.
61
- """)
62
-
63
  with gr.Tab("Event Type Classification"):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64
  with gr.Row(equal_height=True):
65
  with gr.Column(scale=4):
66
  file_input = gr.File(label="Upload CSV File")
 
45
  with gr.Blocks() as demo:
46
  event_models = ["jayebaku/distilbert-base-multilingual-cased-crexdata-relevance-classifier"]
47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48
  with gr.Tab("Event Type Classification"):
49
+ gr.Markdown(
50
+ """
51
+ # T4.5 Relevance Classifier Demo
52
+ This is a demo created to explore floods and wildfire classification in social media posts.\n
53
+ Usage:\n
54
+ - Upload .tsv data file (must contain a text column with social media posts).\n
55
+ - Next, type the name of the text column.\n
56
+ - Then, choose a BERT classifier model from the drop down.\n
57
+ - Finally, click the 'start classification' buttton.\n
58
+ Evaluation:\n
59
+ - To evaluate the model's accuracy select the INCORRECT classifications using the checkboxes in front of each post.\n
60
+ - Then, click on the 'Calculate Accuracy' button.\n
61
+ - Then, click on the 'Download data as CSV' to get the classifications and evaluation data as a .csv file.
62
+ """)
63
  with gr.Row(equal_height=True):
64
  with gr.Column(scale=4):
65
  file_input = gr.File(label="Upload CSV File")