jayebaku commited on
Commit
9101813
·
verified ·
1 Parent(s): 5a36129

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -5
app.py CHANGED
@@ -212,10 +212,11 @@ with gr.Blocks(fill_width=True) as demo:
212
  3. Then, choose a BERT classifier model from the drop down.\n
213
  4. Finally, click the 'start prediction' buttton.\n
214
  """)
215
- with gr.Row():
216
- with gr.Column(scale=4):
217
- with gr.Group():
218
  T_file_input = gr.File(label="Upload CSV or TSV File", file_types=['.tsv', '.csv'])
 
219
  T_text_field = gr.Textbox(label="Text field name", value="tweet_text")
220
  T_event_model = gr.Dropdown(event_models, value=event_models[0], label="Select classification model")
221
  with gr.Accordion("Prediction threshold", open=False):
@@ -223,13 +224,13 @@ with gr.Blocks(fill_width=True) as demo:
223
  info="This value sets a threshold by which texts classified flood or fire are accepted, \
224
  higher values makes the classifier stricter (CAUTION: A value of 1 will set all predictions as none)", interactive=True)
225
  T_predict_button = gr.Button("Start Prediction")
226
-
 
227
  T_data_filter = gr.Dropdown(visible=False)
228
  T_tweet_embed = gr.HTML("<h1>Select a Tweet ID to view Tweet</h1>", container=True, every=1.0)
229
 
230
  with gr.Column(scale=6):
231
  T_data = gr.DataFrame(headers=["Texts", "event_label", "model_score", "IDs"],
232
- row_count=(10, 'dynamic'),
233
  wrap=True,
234
  show_fullscreen_button=True,
235
  show_copy_button=True,
 
212
  3. Then, choose a BERT classifier model from the drop down.\n
213
  4. Finally, click the 'start prediction' buttton.\n
214
  """)
215
+ with gr.Group():
216
+ with gr.Row(equal_height=True):
217
+ with gr.Column():
218
  T_file_input = gr.File(label="Upload CSV or TSV File", file_types=['.tsv', '.csv'])
219
+ with gr.Column():
220
  T_text_field = gr.Textbox(label="Text field name", value="tweet_text")
221
  T_event_model = gr.Dropdown(event_models, value=event_models[0], label="Select classification model")
222
  with gr.Accordion("Prediction threshold", open=False):
 
224
  info="This value sets a threshold by which texts classified flood or fire are accepted, \
225
  higher values makes the classifier stricter (CAUTION: A value of 1 will set all predictions as none)", interactive=True)
226
  T_predict_button = gr.Button("Start Prediction")
227
+ with gr.Row():
228
+ with gr.Column(scale=4):
229
  T_data_filter = gr.Dropdown(visible=False)
230
  T_tweet_embed = gr.HTML("<h1>Select a Tweet ID to view Tweet</h1>", container=True, every=1.0)
231
 
232
  with gr.Column(scale=6):
233
  T_data = gr.DataFrame(headers=["Texts", "event_label", "model_score", "IDs"],
 
234
  wrap=True,
235
  show_fullscreen_button=True,
236
  show_copy_button=True,