Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -212,10 +212,11 @@ with gr.Blocks(fill_width=True) as demo:
|
|
212 |
3. Then, choose a BERT classifier model from the drop down.\n
|
213 |
4. Finally, click the 'start prediction' buttton.\n
|
214 |
""")
|
215 |
-
with gr.
|
216 |
-
with gr.
|
217 |
-
with gr.
|
218 |
T_file_input = gr.File(label="Upload CSV or TSV File", file_types=['.tsv', '.csv'])
|
|
|
219 |
T_text_field = gr.Textbox(label="Text field name", value="tweet_text")
|
220 |
T_event_model = gr.Dropdown(event_models, value=event_models[0], label="Select classification model")
|
221 |
with gr.Accordion("Prediction threshold", open=False):
|
@@ -223,13 +224,13 @@ with gr.Blocks(fill_width=True) as demo:
|
|
223 |
info="This value sets a threshold by which texts classified flood or fire are accepted, \
|
224 |
higher values makes the classifier stricter (CAUTION: A value of 1 will set all predictions as none)", interactive=True)
|
225 |
T_predict_button = gr.Button("Start Prediction")
|
226 |
-
|
|
|
227 |
T_data_filter = gr.Dropdown(visible=False)
|
228 |
T_tweet_embed = gr.HTML("<h1>Select a Tweet ID to view Tweet</h1>", container=True, every=1.0)
|
229 |
|
230 |
with gr.Column(scale=6):
|
231 |
T_data = gr.DataFrame(headers=["Texts", "event_label", "model_score", "IDs"],
|
232 |
-
row_count=(10, 'dynamic'),
|
233 |
wrap=True,
|
234 |
show_fullscreen_button=True,
|
235 |
show_copy_button=True,
|
|
|
212 |
3. Then, choose a BERT classifier model from the drop down.\n
|
213 |
4. Finally, click the 'start prediction' buttton.\n
|
214 |
""")
|
215 |
+
with gr.Group():
|
216 |
+
with gr.Row(equal_height=True):
|
217 |
+
with gr.Column():
|
218 |
T_file_input = gr.File(label="Upload CSV or TSV File", file_types=['.tsv', '.csv'])
|
219 |
+
with gr.Column():
|
220 |
T_text_field = gr.Textbox(label="Text field name", value="tweet_text")
|
221 |
T_event_model = gr.Dropdown(event_models, value=event_models[0], label="Select classification model")
|
222 |
with gr.Accordion("Prediction threshold", open=False):
|
|
|
224 |
info="This value sets a threshold by which texts classified flood or fire are accepted, \
|
225 |
higher values makes the classifier stricter (CAUTION: A value of 1 will set all predictions as none)", interactive=True)
|
226 |
T_predict_button = gr.Button("Start Prediction")
|
227 |
+
with gr.Row():
|
228 |
+
with gr.Column(scale=4):
|
229 |
T_data_filter = gr.Dropdown(visible=False)
|
230 |
T_tweet_embed = gr.HTML("<h1>Select a Tweet ID to view Tweet</h1>", container=True, every=1.0)
|
231 |
|
232 |
with gr.Column(scale=6):
|
233 |
T_data = gr.DataFrame(headers=["Texts", "event_label", "model_score", "IDs"],
|
|
|
234 |
wrap=True,
|
235 |
show_fullscreen_button=True,
|
236 |
show_copy_button=True,
|