jayebaku commited on
Commit
9442705
·
verified ·
1 Parent(s): 0f6e95f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +17 -4
app.py CHANGED
@@ -6,6 +6,7 @@ import pandas as pd
6
  from classifier import classify
7
  from statistics import mean
8
  from genra_incremental import GenraPipeline
 
9
 
10
 
11
  HFTOKEN = os.environ["HF_TOKEN"]
@@ -133,6 +134,15 @@ def qa_process(selected_queries, qa_llm_model, aggregator,
133
 
134
  return q_a_df, answers_df, summary
135
 
 
 
 
 
 
 
 
 
 
136
 
137
  with gr.Blocks() as demo:
138
  event_models = ["jayebaku/distilbert-base-multilingual-cased-crexdata-relevance-classifier"]
@@ -244,13 +254,16 @@ with gr.Blocks() as demo:
244
  qa_button = gr.Button("Start QA")
245
  hsummary = gr.Textbox(label="Historical Summary")
246
 
247
- qa_df = gr.DataFrame()
248
- answers_df = gr.DataFrame()
249
 
250
  addqry_button.click(add_query, inputs=[query_inp, queries_state], outputs=[selected_queries, queries_state])
 
 
 
251
  qa_button.click(qa_process,
252
- inputs=[selected_queries, qa_llm_model, aggregator, batch_size, topk, text_field, data],
253
- outputs=[qa_df, answers_df, hsummary])
254
 
255
 
256
  demo.launch()
 
6
  from classifier import classify
7
  from statistics import mean
8
  from genra_incremental import GenraPipeline
9
+ from qa_process import generate_answer
10
 
11
 
12
  HFTOKEN = os.environ["HF_TOKEN"]
 
134
 
135
  return q_a_df, answers_df, summary
136
 
137
+ def qa_summarise(selected_queries, qa_llm_model, text_field, data_df):
138
+
139
+ qa_input_df = data_df[data_df["model_label"] != "none"].reset_index()
140
+ texts = qa_input_df[text_field].to_list()
141
+
142
+ summary = generate_answer(qa_llm_model, texts, selected_queries[0], mode="summarize")
143
+
144
+ return summary
145
+
146
 
147
  with gr.Blocks() as demo:
148
  event_models = ["jayebaku/distilbert-base-multilingual-cased-crexdata-relevance-classifier"]
 
254
  qa_button = gr.Button("Start QA")
255
  hsummary = gr.Textbox(label="Historical Summary")
256
 
257
+ # qa_df = gr.DataFrame()
258
+ # answers_df = gr.DataFrame()
259
 
260
  addqry_button.click(add_query, inputs=[query_inp, queries_state], outputs=[selected_queries, queries_state])
261
+ # qa_button.click(qa_process,
262
+ # inputs=[selected_queries, qa_llm_model, aggregator, batch_size, topk, text_field, data],
263
+ # outputs=[qa_df, answers_df, hsummary])
264
  qa_button.click(qa_process,
265
+ inputs=[selected_queries, qa_llm_model, text_field, data],
266
+ outputs=hsummary)
267
 
268
 
269
  demo.launch()