Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -6,6 +6,7 @@ import pandas as pd
|
|
6 |
from classifier import classify
|
7 |
from statistics import mean
|
8 |
from genra_incremental import GenraPipeline
|
|
|
9 |
|
10 |
|
11 |
HFTOKEN = os.environ["HF_TOKEN"]
|
@@ -133,6 +134,15 @@ def qa_process(selected_queries, qa_llm_model, aggregator,
|
|
133 |
|
134 |
return q_a_df, answers_df, summary
|
135 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
|
137 |
with gr.Blocks() as demo:
|
138 |
event_models = ["jayebaku/distilbert-base-multilingual-cased-crexdata-relevance-classifier"]
|
@@ -244,13 +254,16 @@ with gr.Blocks() as demo:
|
|
244 |
qa_button = gr.Button("Start QA")
|
245 |
hsummary = gr.Textbox(label="Historical Summary")
|
246 |
|
247 |
-
qa_df = gr.DataFrame()
|
248 |
-
answers_df = gr.DataFrame()
|
249 |
|
250 |
addqry_button.click(add_query, inputs=[query_inp, queries_state], outputs=[selected_queries, queries_state])
|
|
|
|
|
|
|
251 |
qa_button.click(qa_process,
|
252 |
-
inputs=[selected_queries, qa_llm_model,
|
253 |
-
outputs=
|
254 |
|
255 |
|
256 |
demo.launch()
|
|
|
6 |
from classifier import classify
|
7 |
from statistics import mean
|
8 |
from genra_incremental import GenraPipeline
|
9 |
+
from qa_process import generate_answer
|
10 |
|
11 |
|
12 |
HFTOKEN = os.environ["HF_TOKEN"]
|
|
|
134 |
|
135 |
return q_a_df, answers_df, summary
|
136 |
|
137 |
+
def qa_summarise(selected_queries, qa_llm_model, text_field, data_df):
|
138 |
+
|
139 |
+
qa_input_df = data_df[data_df["model_label"] != "none"].reset_index()
|
140 |
+
texts = qa_input_df[text_field].to_list()
|
141 |
+
|
142 |
+
summary = generate_answer(qa_llm_model, texts, selected_queries[0], mode="summarize")
|
143 |
+
|
144 |
+
return summary
|
145 |
+
|
146 |
|
147 |
with gr.Blocks() as demo:
|
148 |
event_models = ["jayebaku/distilbert-base-multilingual-cased-crexdata-relevance-classifier"]
|
|
|
254 |
qa_button = gr.Button("Start QA")
|
255 |
hsummary = gr.Textbox(label="Historical Summary")
|
256 |
|
257 |
+
# qa_df = gr.DataFrame()
|
258 |
+
# answers_df = gr.DataFrame()
|
259 |
|
260 |
addqry_button.click(add_query, inputs=[query_inp, queries_state], outputs=[selected_queries, queries_state])
|
261 |
+
# qa_button.click(qa_process,
|
262 |
+
# inputs=[selected_queries, qa_llm_model, aggregator, batch_size, topk, text_field, data],
|
263 |
+
# outputs=[qa_df, answers_df, hsummary])
|
264 |
qa_button.click(qa_process,
|
265 |
+
inputs=[selected_queries, qa_llm_model, text_field, data],
|
266 |
+
outputs=hsummary)
|
267 |
|
268 |
|
269 |
demo.launch()
|