Spaces:
Running
on
Zero
Running
on
Zero
Update qa_summary.py
Browse files- qa_summary.py +3 -2
qa_summary.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
import spaces
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
|
4 |
-
@spaces.GPU(duration=
|
5 |
def generate_answer(llm_name, texts, query, queries, mode='validate'):
|
6 |
|
7 |
if llm_name == 'solar':
|
@@ -40,7 +40,8 @@ def generate_answer(llm_name, texts, query, queries, mode='validate'):
|
|
40 |
elif mode == 'h_summarize':
|
41 |
conversation = [ {'role': 'user', 'content': f'The documents below describe a developing disaster event. Based on these documents, write a brief summary in the form of a paragraph, highlighting the most crucial information. \nDocuments: {template_texts}'} ]
|
42 |
elif mode == "multi_summarize":
|
43 |
-
conversation = [ {'role': 'user', 'content': f'For the following queries and documents, try to answer the given queries based on the documents.\nQueries: {queries} \nDocuments: {template_texts}.'} ]
|
|
|
44 |
|
45 |
|
46 |
prompt = tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True)
|
|
|
1 |
import spaces
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
|
4 |
+
@spaces.GPU(duration=60)
|
5 |
def generate_answer(llm_name, texts, query, queries, mode='validate'):
|
6 |
|
7 |
if llm_name == 'solar':
|
|
|
40 |
elif mode == 'h_summarize':
|
41 |
conversation = [ {'role': 'user', 'content': f'The documents below describe a developing disaster event. Based on these documents, write a brief summary in the form of a paragraph, highlighting the most crucial information. \nDocuments: {template_texts}'} ]
|
42 |
elif mode == "multi_summarize":
|
43 |
+
# conversation = [ {'role': 'user', 'content': f'For the following queries and documents, try to answer the given queries based on the documents. Also, return the top 5 unaltered documents that answer the queries.\nQueries: {queries} \nDocuments: {template_texts}.'} ]
|
44 |
+
conversation = [ {'role': 'user', 'content': f'For the following queries and documents, in a brief paragraph try to answer the given queries based on the documents. Then, return the top 5 documents as provided that answer the queries.\nQueries: {queries} \nDocuments: {template_texts}.'} ]
|
45 |
|
46 |
|
47 |
prompt = tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True)
|