Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -9,8 +9,11 @@ from statistics import mean
|
|
| 9 |
|
| 10 |
HFTOKEN = os.environ["HF_TOKEN"]
|
| 11 |
|
| 12 |
-
def
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
if text_field not in df.columns:
|
| 16 |
raise gr.Error(f"Error: Enter text column'{text_field}' not in CSV file.")
|
|
@@ -91,7 +94,7 @@ with gr.Blocks() as demo:
|
|
| 91 |
# T4.5 Relevance Classifier Demo
|
| 92 |
This is a demo created to explore floods and wildfire classification in social media posts.\n
|
| 93 |
Usage:\n
|
| 94 |
-
|
| 95 |
-Next, type the name of the text column.\n
|
| 96 |
-Then, choose a BERT classifier model from the drop down.\n
|
| 97 |
-Finally, click the 'start prediction' buttton.\n
|
|
@@ -102,7 +105,7 @@ with gr.Blocks() as demo:
|
|
| 102 |
""")
|
| 103 |
with gr.Row(equal_height=True):
|
| 104 |
with gr.Column(scale=4):
|
| 105 |
-
file_input = gr.File(label="Upload CSV File")
|
| 106 |
|
| 107 |
with gr.Column(scale=6):
|
| 108 |
text_field = gr.Textbox(label="Text field name", value="tweet_text")
|
|
@@ -150,7 +153,7 @@ with gr.Blocks() as demo:
|
|
| 150 |
data_eval = gr.DataFrame(visible=False)
|
| 151 |
|
| 152 |
predict_button.click(
|
| 153 |
-
|
| 154 |
inputs=[file_input, text_field, event_model],
|
| 155 |
outputs=[flood_checkbox_output, fire_checkbox_output, none_checkbox_output, model_confidence, num_posts, data])
|
| 156 |
accuracy_button.click(
|
|
|
|
| 9 |
|
| 10 |
HFTOKEN = os.environ["HF_TOKEN"]
|
| 11 |
|
| 12 |
+
def load_and_classify_csv(file, text_field, event_model):
|
| 13 |
+
if ".csv" in file.name:
|
| 14 |
+
df = pd.read_csv(file.name)
|
| 15 |
+
else ".tsv" in file.name:
|
| 16 |
+
df = pd.read_table(file.name)
|
| 17 |
|
| 18 |
if text_field not in df.columns:
|
| 19 |
raise gr.Error(f"Error: Enter text column'{text_field}' not in CSV file.")
|
|
|
|
| 94 |
# T4.5 Relevance Classifier Demo
|
| 95 |
This is a demo created to explore floods and wildfire classification in social media posts.\n
|
| 96 |
Usage:\n
|
| 97 |
+
(1.) Upload .tsv data file (must contain a text column with social media posts).\n
|
| 98 |
-Next, type the name of the text column.\n
|
| 99 |
-Then, choose a BERT classifier model from the drop down.\n
|
| 100 |
-Finally, click the 'start prediction' buttton.\n
|
|
|
|
| 105 |
""")
|
| 106 |
with gr.Row(equal_height=True):
|
| 107 |
with gr.Column(scale=4):
|
| 108 |
+
file_input = gr.File(label="Upload CSV or TSV File", file_types=['.tsv', '.csv'])
|
| 109 |
|
| 110 |
with gr.Column(scale=6):
|
| 111 |
text_field = gr.Textbox(label="Text field name", value="tweet_text")
|
|
|
|
| 153 |
data_eval = gr.DataFrame(visible=False)
|
| 154 |
|
| 155 |
predict_button.click(
|
| 156 |
+
load_and_classify_csv,
|
| 157 |
inputs=[file_input, text_field, event_model],
|
| 158 |
outputs=[flood_checkbox_output, fire_checkbox_output, none_checkbox_output, model_confidence, num_posts, data])
|
| 159 |
accuracy_button.click(
|