jayebaku commited on
Commit
de89642
·
verified ·
1 Parent(s): 18b65fe

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +16 -8
app.py CHANGED
@@ -95,14 +95,14 @@ with gr.Blocks() as demo:
95
  # T4.5 Relevance Classifier Demo
96
  This is a demo created to explore floods and wildfire classification in social media posts.\n
97
  Usage:\n
98
- (1.) Upload .tsv data file (must contain a text column with social media posts).\n
99
- (2.) Next, type the name of the text column.\n
100
- (3.) Then, choose a BERT classifier model from the drop down.\n
101
- (4.) Finally, click the 'start prediction' buttton.\n
102
  Evaluation:\n
103
- (1.) To evaluate the model's accuracy select the INCORRECT classifications using the checkboxes in front of each post.\n
104
- (2.) Then, click on the 'Calculate Accuracy' button.\n
105
- (3.) Then, click on the 'Download data as CSV' to get the classifications and evaluation data as a .csv file.
106
  """)
107
  with gr.Row(equal_height=True):
108
  with gr.Column(scale=4):
@@ -167,7 +167,15 @@ with gr.Blocks() as demo:
167
 
168
  with qa_tab:
169
  # XXX Add some button disabling here, if the classification process is not completed first XXX
170
-
 
 
 
 
 
 
 
 
171
  selected_queries = gr.CheckboxGroup(label="Select at least one query using the checkboxes", interactive=True)
172
  qa_tab.select(get_queries, None, selected_queries)
173
  qa_button = gr.Button("Start QA")
 
95
  # T4.5 Relevance Classifier Demo
96
  This is a demo created to explore floods and wildfire classification in social media posts.\n
97
  Usage:\n
98
+ - Upload .tsv data file (must contain a text column with social media posts).\n
99
+ - Next, type the name of the text column.\n
100
+ - Then, choose a BERT classifier model from the drop down.\n
101
+ - Finally, click the 'start prediction' buttton.\n
102
  Evaluation:\n
103
+ - To evaluate the model's accuracy select the INCORRECT classifications using the checkboxes in front of each post.\n
104
+ - Then, click on the 'Calculate Accuracy' button.\n
105
+ - Then, click on the 'Download data as CSV' to get the classifications and evaluation data as a .csv file.
106
  """)
107
  with gr.Row(equal_height=True):
108
  with gr.Column(scale=4):
 
167
 
168
  with qa_tab:
169
  # XXX Add some button disabling here, if the classification process is not completed first XXX
170
+
171
+ gr.Markdown(
172
+ """
173
+ # Question Answering Demo
174
+ This section uses RAG to answer questions about the relevant social media posts identified by the relevance classifier\n
175
+ Usage:\n
176
+ - Select queries from predefined\n
177
+ - Parameters for QA can be editted in sidebar\n
178
+ """)
179
  selected_queries = gr.CheckboxGroup(label="Select at least one query using the checkboxes", interactive=True)
180
  qa_tab.select(get_queries, None, selected_queries)
181
  qa_button = gr.Button("Start QA")