File size: 11,762 Bytes
605b3ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
import json
import logging
import os
from collections import OrderedDict
from decimal import Decimal
from pathlib import Path
from typing import Callable, Union
from typing import Tuple, Optional, List, Dict

import meeteval
import numpy as np
import pandas as pd
from meeteval.io.seglst import SegLstSegment
from meeteval.wer.wer.orc import OrcErrorRate

# this must be called before any other loggers are instantiated to take effect
logging.basicConfig(level=logging.INFO, format='%(asctime)s [%(levelname)s] [%(name)s]  %(message)s')


def get_logger(name: str):
    """
    All modules should use this function to get a logger.
    This way, we ensure all loggers are instantiated after basicConfig() call and inherit the same config.
    """
    return logging.getLogger(name)


_LOG = get_logger('wer')


def create_dummy_seg_list(session_id):
    return meeteval.io.SegLST(
        [{'session_id': session_id, 'start_time': Decimal(0), 'end_time': Decimal(0), 'speaker': '', 'words': ''}])


def calc_session_tcp_wer(ref, hyp, collar):
    res = meeteval.wer.tcpwer(reference=ref, hypothesis=hyp, collar=collar)

    res_df = pd.DataFrame.from_dict(res, orient='index').reset_index(names='session_id')
    keys = ['error_rate', 'errors', 'length', 'insertions', 'deletions', 'substitutions',
            'missed_speaker', 'falarm_speaker', 'scored_speaker', 'assignment']
    return (res_df[['session_id'] + keys]
            .rename(columns={k: 'tcp_' + k for k in keys})
            .rename(columns={'tcp_error_rate': 'tcp_wer'}))


def calc_wer(
             ref_seglst: SegLstSegment,
             tcp_hyp_seglst: SegLstSegment,
             collar: int = 5,
             metrics_list: List[str] = None) -> pd.DataFrame:
    """
    Calculates tcpWER and tcorcWER for each session in hypothesis files using meeteval, and saves the error
    information to .json.
    Text normalization is applied to both hypothesis and reference.

    Args:
        out_dir: the directory to save the ref.json reference transcript to (extracted from gt_utt_df).
        tcp_wer_hyp_json: path to hypothesis .json file for tcpWER, or json structure.
        tcorc_wer_hyp_json: path to hypothesis .json file for tcorcWER, or json structure.
        gt_utt_df: dataframe of ground truth utterances. must include the sessions in the hypothesis files.
            see load_data() function.
        tn: text normalizer
        collar: tolerance of tcpWER to temporal misalignment between hypothesis and reference.
        save_visualizations: if True, save html visualizations of alignment between hyp and ref.
        meeting_id_is_session_id: if True, the session_id in the hypothesis/ref files is the same as the meeting_id.
    Returns:
        wer_df: pd.DataFrame with columns -
            'session_id' - same as in hypothesis files
            'tcp_wer': tcpWER
            'tcorc_wer': tcorcWER
            ... intermediate tcpWER/tcorcWER fields such as insertions/deletions. see in code.
    """
    # json to SegLST structure (Segment-wise Long-form Speech Transcription annotation)
    if len(tcp_hyp_seglst) == 0:
        tcp_hyp_seglst = create_dummy_seg_list(ref_seglst.segments[0]['session_id'])
        _LOG.warning(f"Empty tcp_wer_hyp_json, using dummy segment: {tcp_hyp_seglst.segments[0]}")

    wers_to_concat = []

    if "tcp_wer" in metrics_list:
        tcp_wer_res = calc_session_tcp_wer(ref_seglst, tcp_hyp_seglst, collar)
        wers_to_concat.append(tcp_wer_res.drop(columns='session_id'))

    wer_df = pd.concat(wers_to_concat, axis=1)

    wer_df['session_id'] = ref_seglst.segments[0]['session_id']
    _LOG.debug('Done calculating WER')

    _LOG.debug(f"\n{wer_df[['session_id', *metrics_list]]}")

    return wer_df

def aggregate_wer_metrics(wer_df: pd.DataFrame, metrics_list: List[str]) -> Dict:
    num_wer_df = wer_df._get_numeric_data()
    metrics = num_wer_df.sum().to_dict(into=OrderedDict)

    for metric in metrics_list:
        mprefix, _ = metric.split("_", maxsplit=1)
        metrics[mprefix + "_wer"] = metrics[mprefix + "_errors"] / metrics[mprefix + "_length"]
        for k in ['missed_speaker', 'falarm_speaker', 'scored_speaker']:
            # compute mean for this keys
            key = f"{mprefix}_{k}"
            new_key = f"{mprefix}_mean_{k}"
            if key not in metrics:
                continue
            metrics[new_key] = metrics[key] / len(num_wer_df)
            del metrics[key]
    return metrics

def normalize_segment(segment: SegLstSegment, tn):
    words = segment["words"]
    words = tn(words)
    segment["words"] = words
    return segment


def assign_streams(tcorc_hyp_seglst):
    tcorc_hyp_seglst = tcorc_hyp_seglst.groupby(key='speaker')
    per_stream_list = [[] for _ in range(len(tcorc_hyp_seglst))]
    for speaker_id, speaker_seglst in tcorc_hyp_seglst.items():
        speaker_seglst = speaker_seglst.sorted(key='start_time')
        for seg in speaker_seglst:
            # check if current segment does not overlap with any of the segments in per_stream_list
            for i in range(len(per_stream_list)):
                if not any(seg['start_time'] < s['end_time'] and seg['end_time'] > s['start_time'] for s in
                           per_stream_list[i]):
                    seg['speaker'] = i
                    per_stream_list[i].append(seg)
                    break
            else:
                raise ValueError('No stream found for segment')
    tcorc_hyp_seglst = meeteval.io.SegLST([seg for stream in per_stream_list for seg in stream]).sorted(
        key='start_time')
    return tcorc_hyp_seglst


def filter_empty_segments(seg_lst):
    return seg_lst.filter(lambda seg: seg['words'] != '')


def find_first_non_overlapping_segment_streams(per_speaker_groups, per_speaker_vad_masks):
    for speaker_id, speaker_seglst in per_speaker_groups.items():
        for other_speaker_id, other_speaker_seglst in per_speaker_groups.items():
            if speaker_id != other_speaker_id:
                vad_mask_merged = per_speaker_vad_masks[speaker_id] & per_speaker_vad_masks[other_speaker_id]
                if not vad_mask_merged.any():
                    return (speaker_id, other_speaker_id)


def change_speaker_id(segment, speaker_id):
    segment['speaker'] = speaker_id
    return segment


def merge_streams(tcorc_hyp_seglst):
    per_speaker_groups = tcorc_hyp_seglst.groupby(key='speaker')

    # create per speaker vad masks
    per_speaker_vad_masks = {}
    for speaker_id, speaker_seglst in per_speaker_groups.items():
        per_speaker_vad_masks[speaker_id] = create_vad_mask(speaker_seglst, time_step=0.01)

    longest_mask = max(len(mask) for mask in per_speaker_vad_masks.values())

    # pad all masks to the same length
    for speaker_id, mask in per_speaker_vad_masks.items():
        per_speaker_vad_masks[speaker_id] = np.pad(mask, (0, longest_mask - len(mask)))

    # recursively merge all pairs of speakers that have no overlapping vad masks
    while True:
        res = find_first_non_overlapping_segment_streams(per_speaker_groups, per_speaker_vad_masks)
        if res is None:
            break
        speaker_id, other_speaker_id = res
        per_speaker_groups[speaker_id] = per_speaker_groups[speaker_id] + per_speaker_groups[other_speaker_id].map(
            lambda seg: change_speaker_id(seg, speaker_id))
        per_speaker_vad_masks[speaker_id] = per_speaker_vad_masks[speaker_id] | per_speaker_vad_masks[other_speaker_id]
        del per_speaker_groups[other_speaker_id]
        del per_speaker_vad_masks[other_speaker_id]

    tcorc_hyp_seglst = meeteval.io.SegLST(
        [seg for speaker_seglst in per_speaker_groups.values() for seg in speaker_seglst]).sorted(key='start_time')

    return tcorc_hyp_seglst


def normalize_segment(segment: SegLstSegment, tn):
    words = segment["words"]
    words = tn(words)
    segment["words"] = words
    return segment


def create_vad_mask(segments, time_step=0.1, total_duration=None):
    """
    Create a VAD mask for the given segments.

    :param segments: List of segments, each containing 'start_time' and 'end_time'
    :param time_step: The resolution of the VAD mask in seconds (default: 100ms)
    :param total_duration: Optionally specify the total duration to create the mask.
                           If not provided, the mask will be generated based on the maximum end time of the segments.
    :return: VAD mask as a numpy array, where 1 represents voice activity and 0 represents silence.
    """
    # Find the total duration if not provided
    if total_duration is None:
        total_duration = max(seg['end_time'] for seg in segments)

    # Initialize VAD mask as zeros (silence)
    mask_length = int(float(total_duration) / time_step) + 1
    vad_mask = np.zeros(mask_length, dtype=bool)

    # Iterate over segments and mark the corresponding times as active (1)
    for seg in segments:
        start_idx = int(float(seg['start_time']) / time_step)
        end_idx = int(float(seg['end_time']) / time_step)
        vad_mask[start_idx:end_idx] = 1

    return vad_mask


def find_group_splits(vad, group_duration=30, time_step=0.1):
    non_active_indices = np.argwhere(~vad).squeeze(axis=-1)
    splits = []
    group_shift = group_duration / time_step
    next_offset = group_shift
    for i in non_active_indices:
        if i >= next_offset:
            splits.append(i)
            next_offset = i + group_shift
    return splits


def map_utterance_to_split(utterance_start_time, splits):
    for i, split in enumerate(splits):
        if utterance_start_time < split:
            return i
    return len(splits)


def agregate_errors_across_groups(res, session_id):
    overall_error_number = sum([group.errors for group in res.values()])
    overall_length = sum([group.length for group in res.values()])
    overall_errors = {
        'error_rate': overall_error_number / overall_length,
        'errors': overall_error_number,
        'length': overall_length,
        'insertions': sum([group.insertions for group in res.values()]),
        'deletions': sum([group.deletions for group in res.values()]),
        'substitutions': sum([group.substitutions for group in res.values()]),
        'assignment': []
    }
    for group in res.values():
        overall_errors['assignment'].extend(list(group.assignment))
    overall_errors['assignment'] = tuple(overall_errors['assignment'])
    res = {session_id: OrcErrorRate(errors=overall_errors["errors"],
                                    length=overall_errors["length"],
                                    insertions=overall_errors["insertions"],
                                    deletions=overall_errors["deletions"],
                                    substitutions=overall_errors["substitutions"],
                                    hypothesis_self_overlap=None,
                                    reference_self_overlap=None,
                                    assignment=overall_errors["assignment"])}
    return res


def aggregate_wer_metrics(wer_df: pd.DataFrame, metrics_list: List[str]) -> Dict:
    num_wer_df = wer_df._get_numeric_data()
    metrics = num_wer_df.sum().to_dict(into=OrderedDict)

    for metric in metrics_list:
        mprefix, _ = metric.split("_", maxsplit=1)
        metrics[mprefix + "_wer"] = metrics[mprefix + "_errors"] / metrics[mprefix + "_length"]
        for k in ['missed_speaker', 'falarm_speaker', 'scored_speaker']:
            # compute mean for this keys
            key = f"{mprefix}_{k}"
            new_key = f"{mprefix}_mean_{k}"
            if key not in metrics:
                continue
            metrics[new_key] = metrics[key] / len(num_wer_df)
            del metrics[key]
    return metrics