File size: 1,022 Bytes
092aa85
 
84c269c
092aa85
 
ab0b7fb
092aa85
9e13de8
ab0b7fb
 
9e13de8
ab0b7fb
9e13de8
ab0b7fb
 
 
9e13de8
 
092aa85
84c269c
ab0b7fb
092aa85
 
ab0b7fb
9e13de8
092aa85
 
9e13de8
ab0b7fb
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
import gradio as gr
from diffusers import StableDiffusionImg2ImgPipeline
import torch
from PIL import Image

# Load pretrained model
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
    "runwayml/stable-diffusion-v1-5",
    torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
    use_auth_token=True  # Use secret token
)
pipe = pipe.to("cuda" if torch.cuda.is_available() else "cpu")

# Main function
def generate_thumbnail(prompt, image):
    image = image.resize((512, 512)).convert("RGB")
    result = pipe(prompt=prompt, image=image, strength=0.75, guidance_scale=7.5)
    return result.images[0]

# Gradio UI
gr.Interface(
    fn=generate_thumbnail,
    inputs=[
        gr.Textbox(label="Prompt (e.g. 'Minecraft NOOB vs PRO battle')"),
        gr.Image(type="pil", label="Upload Background Image")
    ],
    outputs=gr.Image(label="Generated Thumbnail"),
    title="🖼️ AI Thumbnail Generator",
    description="Enter prompt and image to create YouTube-style thumbnails"
).launch()