File size: 1,235 Bytes
092aa85 570dba4 8d02d2b 570dba4 1ab63ce 570dba4 9e13de8 1ab63ce 570dba4 1ab63ce 092aa85 6356263 570dba4 092aa85 570dba4 f0c1900 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
import gradio as gr
from diffusers import StableDiffusionPipeline
import torch
# Model load
pipe = StableDiffusionPipeline.from_pretrained(
"Linaqruf/anything-v3.0",
torch_dtype=torch.float16,
revision="fp16",
safety_checker=None
).to("cuda" if torch.cuda.is_available() else "cpu")
def generate_thumbnail(prompt):
image = pipe(prompt, height=512, width=512).images[0]
return image
# Gradio UI
iface = gr.Interface(
fn=generate_thumbnail,
inputs=gr.Textbox(label="Thumbnail Prompt"),
outputs=gr.Image(label="Generated Thumbnail"),
title="Anime Thumbnail Generator",
description="Generate thumbnails using Linaqruf/anything-v3.0 model"
)
iface.launch()
from diffusers import StableDiffusionPipeline
import torch
import gradio as gr
pipe = StableDiffusionPipeline.from_pretrained(
"Linaqruf/anything-v3.0",
torch_dtype=torch.float16, # यह सिर्फ device-level पर effect करता है
use_auth_token=True
).to("cuda")
def generate(prompt):
image = pipe(prompt).images[0]
return image
gr.Interface(
fn=generate,
inputs=gr.Textbox(label="Prompt"),
outputs=gr.Image(type="pil"),
title="Anything-v3 Thumbnail Generator"
).launch() |